pulmonary fibrosis
Recently Published Documents





2022 ◽  
Vol 104 ◽  
pp. 108504
Ye Lu ◽  
Wenshan Zhong ◽  
Yuanyuan Liu ◽  
Weimou chen ◽  
Jinming zhang ◽  

2022 ◽  
Vol 271 ◽  
pp. 125-136
Erik H. Ander ◽  
Abul Kashem ◽  
Huaqing Zhao ◽  
Kelly Montgomery ◽  
Gengo Sunagawa ◽  

2022 ◽  
Vol 12 (4) ◽  
pp. 834-840
Peng Xu ◽  
Fang Sun ◽  
Ming Xiong ◽  
Qun Li ◽  
Peng Tu ◽  

Purpose: To discuss the effects and mechanisms of improvement of Hydroxysafflor yellow A in pulmonary fibrosis by in vivo study. Material and Methods: In this study, dividing the C57BL/6 mice as 4 group, there were 10 mice in every group. Collecting the serum of difference groups and measuring the Hyp, SOD, MDA, TNF-α and IL-6 levels. Lung tissues were taken out and evaluating the pathology by HE staining and fibrosis degree by Masson staining. The relative proteins (α-SMA and E-cadherin) were measured by IHC and WB in lung tissues of difference groups. Results: With HSYA or DXM supplement, the Hyp, MDA, TNF-α and IL-6 concentrations significantly suppressed and SOD concentration significantly enhanced (P < 0.05, respectively). Compared with Sham group, the pathology injury and fibrosis degree of Model group were significantly up-regulation (P < 0.001, respectively); With HSYA or DXM treatment, the pathology injury and fibrosis degree of HSYA and DXM groups were significantly improved (P < 0.05, respectively). By IHC and WB assay, the α-SMA and E-cadherin proteins expressions of Model group were significantly differences (P < 0.001, respectively); however, the α-SMA and E-cadherin proteins expressions of HSYA and DXM groups were significantly improved with HSYA or DXM supplement (P < 0.05, respectively). Conclusion: HSYA improves pulmonary fibrosis by regulation α-SMA and E-cadherin in vivo study.

2022 ◽  
Vol 103 ◽  
pp. 108470
Xiaohe Li ◽  
Qing Liang ◽  
Shaoyan Gao ◽  
Qiuyan Jiang ◽  
Fangxia Zhang ◽  

2022 ◽  
Vol 17 (1) ◽  
Hiroshi Mayahara ◽  
Kazuyuki Uehara ◽  
Aya Harada ◽  
Keiji Kitatani ◽  
Tomonori Yabuuchi ◽  

Abstract Background Concurrent chemoradiotherapy (CCRT) followed by durvalumab is the standard of care for unresectable locally-advanced non-small cell carcinoma (LA-NSCLC). However, a major concern about administration of durvalumab after CCRT is whether the incidence of symptomatic radiation pneumonitis (RP) may increase or not. In the present analysis, we report the initial results of CCRT followed by durvalumab in patients with LA-NSCLC in a real-world setting with focus on predicting factors for symptomatic RP. Methods Patients who were pathologically diagnosed as NSCLC and initiated treatment with CCRT followed by durvalumab between July 2018 to December 2019 were eligible for this study. Patients were included if they completed the planned CRT course and administered at least one course of durvalumab. We retrospectively investigated the preliminary survival outcome and incidence and predicting factors for symptomatic RP. Results Of the 67 patients who planned CCRT, 63 patients completed the entire CCRT course. Of these, 56 patients proceeded to consolidation with durvalumab. The median time to eternal discontinuation of durvalumab was 9.7 months. The cumulative proportion of the patients who exhibited symptomatic RP was 30, 40 and 44% at 3, 6 and 12 months, respectively. In multivariate analyses, pulmonary fibrosis score and lung V40 were significant predictive factors for symptomatic RP (p < 0.001, HR: 7.83, 95% CI: 3.38–18.13, and p = 0.034, HR: 3.17, 95% CI: 1.09–9.19, respectively). Conclusions Pulmonary fibrosis sore and lung V40 were significant predictive factors for symptomatic RP. We should be cautious about the administration of durvalumab for patients having subclinical pulmonary fibrosis. To our best knowledge, this is one of the first report showing the predictive value of high dose volumes to the lung in patients with LA-NSCLC who received CCRT followed by durvalumab.

Salim A. Si-Mohamed ◽  
Mouhamad Nasser ◽  
Marion Colevray ◽  
Olivier Nempont ◽  
Pierre-Jean Lartaud ◽  

Abstract Objectives To compare the lung CT volume (CTvol) and pulmonary function tests in an interstitial lung disease (ILD) population. Then to evaluate the CTvol loss between idiopathic pulmonary fibrosis (IPF) and non-IPF and explore a prognostic value of annual CTvol loss in IPF. Methods We conducted in an expert center a retrospective study between 2005 and 2018 on consecutive patients with ILD. CTvol was measured automatically using commercial software based on a deep learning algorithm. In the first group, Spearman correlation coefficients (r) between forced vital capacity (FVC), total lung capacity (TLC), and CTvol were calculated. In a second group, annual CTvol loss was calculated using linear regression analysis and compared with the Mann–Whitney test. In a last group of IPF patients, annual CTvol loss was calculated between baseline and 1-year CTs for investigating with the Youden index a prognostic value of major adverse event at 3 years. Univariate and log-rank tests were calculated. Results In total, 560 patients (4610 CTs) were analyzed. For 1171 CTs, CTvol was correlated with FVC (r: 0.86) and TLC (r: 0.84) (p < 0.0001). In 408 patients (3332 CT), median annual CTvol loss was 155.7 mL in IPF versus 50.7 mL in non-IPF (p < 0.0001) over 5.03 years. In 73 IPF patients, a relative annual CTvol loss of 7.9% was associated with major adverse events (log-rank, p < 0.0001) in univariate analysis (p < 0.001). Conclusions Automated lung CT volume may be an alternative or a complementary biomarker to pulmonary function tests for the assessment of lung volume loss in ILD. Key Points • There is a good correlation between lung CT volume and forced vital capacity, as well as for with total lung capacity measurements (r of 0.86 and 0.84 respectively, p < 0.0001). • Median annual CT volume loss is significantly higher in patients with idiopathic pulmonary fibrosis than in patients with other fibrotic interstitial lung diseases (155.7 versus 50.7 mL, p < 0.0001). • In idiopathic pulmonary fibrosis, a relative annual CT volume loss higher than 9.4% is associated with a significantly reduced mean survival time at 2.0 years versus 2.8 years (log-rank, p < 0.0001).

2022 ◽  
Vol 12 ◽  
Suqing Liu ◽  
Qingqing Yang ◽  
Binbin Dong ◽  
Chunhui Qi ◽  
Tao Yang ◽  

Gypenosides (Gyps), the major active constituents isolated from Gynostemma pentaphyllum, possess anti-inflammatory and antioxidant activities. Previous studies have demonstrated that Gyps displayed potent ameliorative effects on liver fibrosis and renal fibrosis. In this study, we found that Gyps significantly reduced the mortality of bleomycin-induced pulmonary fibrosis mice (40% mortality rate of mice in the model group versus 0% in the treatment group). Masson staining showed that Gyps could reduce the content of collagen in the lung tissue of pulmonary fibrosis mice Masson staining and immunohistochemistry demonstrated that the expression of the collagen gene α-SMA and fibrosis gene Col1 markedly decreased after Gyps treatment. The active mitosis of fibroblasts is one of the key processes in the pathogenesis of fibrotic diseases. RNA-seq showed that Gyps significantly inhibited mitosis and induced the G2/M phase cell cycle arrest. The mTOR/c-Myc axis plays an important role in the pathological process of pulmonary fibrosis. RNA-seq also demonstrated that Gyps inhibited the mTOR and c-Myc signaling in pulmonary fibrosis mice, which was further validated by Western blot and immunohistochemistry. AKT functions as an upstream molecule that regulates mTOR. Our western blot data showed that Gyps could suppress the activation of AKT. In conclusion, Gyps exerted anti-pulmonary fibrosis activity by inhibiting the AKT/mTOR/c-Myc pathway.

2022 ◽  
Vol 12 ◽  
Jing Geng ◽  
Yuan Liu ◽  
Huaping Dai ◽  
Chen Wang

Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.

2022 ◽  
pp. 00583-2021
Christoffer Stark ◽  
Juha W. Koskenvuo ◽  
Antti Nykänen ◽  
Eija H. Seppälä ◽  
Samuel Myllykangas ◽  

Question addressed by the studyThe prevalence of monogenic disease-causing gene variants in lung-transplant recipients with idiopathic pulmonary fibrosis is not fully known. Their impact on clinical outcomes before and after transplantation requires more evidence.Patients and MethodsWe retrospectively performed sequence analysis of genes associated with pulmonary fibrosis in a cohort of 23 patients with histologically confirmed usual interstitial pneumonia that had previously undergone double lung transplantation. We evaluated the impact of confirmed molecular diagnoses on disease progression, clinical outcomes and incidence of acute rejection or chronic lung allograft dysfunction after transplantation.ResultsFifteen patients out of 23 (65%) had a variant in a gene associated with interstitial lung disease. Eleven patients (48%) received a molecular diagnosis, of which nine involved genes for telomerase function. Five diagnostic variants were found in the gene for Telomerase reverse transcriptase. Two of these variants, p.(Asp684Gly) and p.(Arg774*), seemed to be enriched in Finnish lung-transplant recipients. Disease progression and the incidence of acute rejection and chronic lung allograft dysfunction was similar between patients with telomere-related disease and the rest of the study population. The incidence of renal or bone marrow insufficiency or skin malignancies did not differ between the groups.Answer to the questionGenetic variants are common in lung transplant recipients with pulmonary fibrosis and are most often related to telomerase function. A molecular diagnosis for telomeropathy does not seem to impact disease progression or the risk of complications or allograft dysfunction after transplantation.

Sign in / Sign up

Export Citation Format

Share Document