Tumor Susceptibility Gene 101 Is Required for the Maintenance of Uterine Epithelial Cells During Embryo Implantation

Author(s):  
Hyunji Byun ◽  
Sojung Kwon ◽  
Kay-Uwe Wagner ◽  
Hyejin Shin ◽  
Hyunjung Jade Lim

Abstract Background: The tumor susceptibility gene 101 (Tsg101), a component of the endosomal sorting complex required for transport (ESCRT) complex I, is involved in multiple biological processes involving endomembranous structures and the plasma membrane. The role of Tsg101 in the uterine epithelium was investigated in Tsg101 floxed mice crossed with Lactoferrin-iCre mice (Tsg101d/d).Methods: Tsg101d/d mice were bred with stud male mice and the status of pregnancy was examined on days 4 and 6. Histological analyses were performed to examine the uterine architecture. Immunofluorescence staining of several markers was examined by confocal microscopy. Uterine epithelial cells (UECs) were isolated from Tsg101f/f and Tsg101d/d mice, and the expression of necroptosis effectors was examined by RT-PCR, western blotting, and immunofluorescence staining. UECs were also subjected to RNA expression profiling.Results: Tsg101d/d female mice were subfertile with implantation failure, showing unattached blastocysts on day 6 of pregnancy. Histological and marker analyses revealed that some Tsg101d/d day 4 pregnant uteri showed a disintegrated uterine epithelial structure. Tsg101d/d UECs began to degenerate within 18 h of culture. In UECs, expression of necroptosis effectors, such as RIPK1, RIPK3, and MLKL were first confirmed. UECs responded to a stimulus to activate necroptosis and showed increased cell death. Conclusions: Tsg101 deficiency in the uterine epithelium causes implantation failure, which accompanies epithelial defects. This study provides evidence that UECs harbor a necroptotic machinery that responds to death-inducing signals. Thus, Tsg101 expression in the uterine epithelium is required for normal pregnancy in mice.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hyunji Byun ◽  
Sojung Kwon ◽  
Kay-Uwe Wagner ◽  
Hyejin Shin ◽  
Hyunjung Jade Lim

Abstract Background The tumor susceptibility gene 101 (Tsg101), a component of the endosomal sorting complex required for transport (ESCRT) complex I, is involved in multiple biological processes involving endomembranous structures and the plasma membrane. The role of Tsg101 in the uterine epithelium was investigated in Tsg101 floxed mice crossed with Lactoferrin-iCre mice (Tsg101d/d). Methods Tsg101d/d mice were bred with stud male mice and the status of pregnancy was examined on days 4 and 6. Histological analyses were performed to examine the uterine architecture. Immunofluorescence staining of several markers was examined by confocal microscopy. Uterine epithelial cells (UECs) were isolated from Tsg101f/f and Tsg101d/d mice, and the expression of necroptosis effectors was examined by RT-PCR, western blotting, and immunofluorescence staining. UECs were also subjected to RNA expression profiling. Results Tsg101d/d female mice were subfertile with implantation failure, showing unattached blastocysts on day 6 of pregnancy. Histological and marker analyses revealed that some Tsg101d/d day 4 pregnant uteri showed a disintegrated uterine epithelial structure. Tsg101d/d UECs began to degenerate within 18 h of culture. In UECs, expression of necroptosis effectors, such as RIPK1, RIPK3, and MLKL were first confirmed. UECs responded to a stimulus to activate necroptosis and showed increased cell death. Conclusions Tsg101 deficiency in the uterine epithelium causes implantation failure, which may be caused by epithelial defects. This study provides evidence that UECs harbor a necroptotic machinery that responds to death-inducing signals. Thus, Tsg101 expression in the uterine epithelium is required for normal pregnancy in mice.


Cancer ◽  
2002 ◽  
Vol 96 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Jonathan L. Hecht ◽  
Benjamin H. Lee ◽  
Jack L. Pinkus ◽  
Geraldine S. Pinkus

2020 ◽  
Vol 13 (646) ◽  
pp. eaba3396
Author(s):  
Xiao-Wei Gu ◽  
Zi-Cong Chen ◽  
Zhen-Shan Yang ◽  
Yan Yang ◽  
Ya-Ping Yan ◽  
...  

Embryo implantation involves a sterile inflammatory reaction that is required for the invasion of the blastocyst into the decidua. Adenosine triphosphate (ATP) released from stressed or injured cells acts as an important signaling molecule to regulate many key physiological events, including sterile inflammation. We found that the amount of ATP in the uterine luminal fluid of mice increased during the peri-implantation period, and this depended on the presence of an embryo. We further showed that the release of ATP from receptive epithelial cells was likely stimulated by lactate released from the blastocyst through connexin hemichannels. The ATP receptor P2y2 was present on uterine epithelial cells during the preimplantation period and increased in the stromal cells during the time at which decidualization began. Pharmacological inhibition of P2y2 compromised decidualization and implantation. ATP-P2y2 signaling stimulated the phosphorylation of Stat3 in uterine luminal epithelial cells and the expression of early growth response 1 (Egr1) and prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2), all of which are required for decidualization and/or implantation, in stromal cells. Short exposure to high concentrations of ATP promoted decidualization of primary stromal cells, but longer exposures or lower ATP concentrations did not. The expression of genes encoding ATP-degrading ectonucleotidases increased in the decidua during the peri-implantation period, suggesting that they may limit the duration of the ATP signal. Together, our results indicate that the blastocyst-induced release of ATP from uterine epithelial cells during the peri-implantation period may be important for the initiation of stromal cell decidualization.


2006 ◽  
Vol 6 (2) ◽  
pp. 294-304 ◽  
Author(s):  
Travis W. Young ◽  
Fang C. Mei ◽  
Daniel G. Rosen ◽  
Gong Yang ◽  
Nan Li ◽  
...  

2013 ◽  
Vol 23 (9) ◽  
pp. 2428-2439 ◽  
Author(s):  
Y. Qin ◽  
Y. Deng ◽  
C.J. Ricketts ◽  
S. Srikantan ◽  
E. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document