atp release
Recently Published Documents


TOTAL DOCUMENTS

1207
(FIVE YEARS 200)

H-INDEX

92
(FIVE YEARS 9)

2022 ◽  
Vol 15 ◽  
Author(s):  
Schuichi Koizumi

Emotion-related neural networks are regulated in part by the activity of glial cells, and glial dysfunction can be directly related to emotional diseases such as depression. Here, we discuss three different therapeutic strategies involving astrocytes that are effective for treating depression. First, the antidepressant, fluoxetine, acts on astrocytes and increases exocytosis of ATP. This has therapeutic effects via brain-derived neurotrophic factor-dependent mechanisms. Second, electroconvulsive therapy is a well-known treatment for drug-resistant depression. Electroconvulsive therapy releases ATP from astrocytes to induce leukemia inhibitory factors and fibroblast growth factor 2, which leads to antidepressive actions. Finally, sleep deprivation therapy is well-known to cause antidepressive effects. Sleep deprivation also increases release of ATP, whose metabolite, adenosine, has antidepressive effects. These independent treatments share the same mechanism, i.e., ATP release from astrocytes, indicating an essential role of glial purinergic signals in the pathogenesis of depression.


2021 ◽  
Author(s):  
Qianman Peng ◽  
Shenqi Qian ◽  
Saud Alqahtani ◽  
Peter Panizzi ◽  
Jianzhong Shen

Recently we reported that in human coronary artery endothelial cells, activation of the P2Y2 receptor (P2Y2R) induces up-regulation of tissue factor (TF), a vital initiator of the coagulation cascade. However, others have shown that monocyte TF is more critical than endothelial TF in provoking a pro-thrombotic state. Thus, we aimed to study whether monocytes express the P2Y2R, its role in controlling TF expression, and its relevance in vivo. RT-PCR and receptor activity assays revealed that among the eight P2Y nucleotide receptors, the P2Y2 subtype was selectively and functionally expressed in human monocytic THP-1 cells and primary monocytes. Stimulation of the cells by ATP or UTP dramatically increased TF protein expression, which was abolished by AR-C118925, a selective P2Y2R antagonist, or by siRNA silencing the P2Y2R. In addition, UTP or ATP treatment induced a rapid accumulation of TF mRNA preceded with an increased TF pre-mRNA, indicating enhanced TF gene transcription. In addition, stimulation of the monocyte P2Y2R significantly activated ERK1/2, JNK, p38, and Akt, along with their downstream transcription factors including c-Jun, c-Fos, and ATF-2, whereas blocking these pathways respectively, all significantly suppressed P2Y2R-mediated TF expression. Furthermore, we found that LPS triggered ATP release and TF expression, the latter of which was suppressed by apyrase or P2Y2R blockage. Importantly, P2Y2R-null mice were more resistant than wild-type mice in response to a lethal dose of LPS, accompanied by much less TF expression in bone marrow cells. These findings demonstrate for the first time that the P2Y2R mediates TF expression in human monocytes through mechanisms involving ERK1/2, JNK, p38, and AKT, and that P2Y2R deletion protects the mice from endotoxemia-induced TF expression and death, highlighting monocyte P2Y2R may be a new drug target for the prevention and/or treatment of relevant thrombotic disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masaki Honda ◽  
Masashi Kadohisa ◽  
Daiki Yoshii ◽  
Yoshihiro Komohara ◽  
Taizo Hibi

AbstractRecruitment of bone marrow derived monocytes via bloodstream and their subsequent conversion to CX3CR1+ macrophages in response to intestinal injury is dependent on CCR2, Nr4a1, and the microbiome. This process is critical for proper tissue repair; however, GATA6+ peritoneal cavity macrophages might represent an alternative, more readily available source of mature and functional myeloid cells at the damaged intestinal locations. Here we show, using spinning-disk confocal microscopy, that large F4/80hiGATA6+ peritoneal cavity macrophages promptly accumulate at damaged intestinal sites upon intestinal thermal injury and upon dextran sodium sulfate induced colitis in mice via a direct route from the peritoneal cavity. In contrast to bloodstream derived monocytes/macrophages, cavity macrophages do not depend on CCR2, Nr4a1 or the microbiome for recruitment, but rather on the ATP-release and exposed hyaluronan at the site of injury. They participate in the removal of necrotic cells, revascularization and collagen deposition and thus resolution of tissue damage. In summary, peritoneal cavity macrophages represent a rapid alternative route of intestinal tissue repair to traditional monocyte-derived macrophages.


Function ◽  
2021 ◽  
Author(s):  
Viola Donati ◽  
Chiara Peres ◽  
Chiara Nardin ◽  
Ferdinando Scavizzi ◽  
Marcello Raspa ◽  
...  

Abstract The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration (${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the ${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$ in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain ${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$ oscillations.


2021 ◽  
Author(s):  
Maximilian Wilmes ◽  
Carolina Pinto Espinoza ◽  
Peter Ludewig ◽  
Arthur Liesz ◽  
Annette Nicke ◽  
...  

Abstract BackgroundPrevious studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple brain disease models. However, tools for the selective and efficient targeting of these receptors are scarce. The new development of P2X7-specific nanobodies (nbs) enables us to effectively block the P2X7-channel.MethodsTemporary middle cerebral artery occlusion (tMCAO) in wildtype and P2X7-transgenic mice was used as a model for ischemic stroke. ATP release was assessed in transgenic ATP sensor mice. Stroke size was measured without treatment and after injection of P2X7-specific nbs i.v. and i.c.v. directly before tMCAO-surgery. P2X7-GFP expressing transgenic mice were used to show immunhistochemically P2X7 distribution in the brain. In vitro cultured microglia were used to investigate calcium-influx, pore-formation via DAPI uptake, caspase 1 activation and IL-1b release after incubation with P2X7-specific nbs. ResultsATP sensor mice showed an increase of ATP-release in the ischemic hemisphere compared to the contralateral hemisphere or sham mice up to 24 h after stroke. We could further verify the role of the ATP-P2X7 axis in P2X7-overexpressing mice, which showed significantly greater stroke volumes after 24 h. In vitro experiments with primary microglia cells showed that P2X7-specific nanobodies were capable of dampening the ATP-trigged calcium-influx and formation of membrane pores measured by Fluo4 fluorescence or DAPI uptake. We found a lower caspase 1 activity and a subsequently lower IL-1b release. However, the intravenous (i.v.) injection of P2X7-specific nanobodies compared to isotype controls before the tMCAO-surgery did not result in smaller stroke size compared to isotype controls. As demonstrated by FACS, nbs had only reached brain infiltrating macrophages but not microglia. To reach microglia, we injected the P2X7-spezific nbs or the isotype directly intraventricularly (icv). 30 mg of P2X7-specific nbs proved efficient for microglial targeting, reducing post-stroke microglia activation and stroke size significantly.ConclusionHere, we demonstrate the importance of locally produced ATP for the tissue damage observed in ischemic stroke and we show the potential of icv injected P2X7-specific nbs to reduce ischemic tissue damage.


2021 ◽  
Author(s):  
Juan Mauricio Garre ◽  
Feliksas F Bukauskas ◽  
Michael V Bennett

Astrocytes express surface channels involved in purinergic signaling, and among these channels, pannexin-1 (Px1) and connexin-43 (Cx43) hemichannels (HCs) mediate ATP release that acts directly, or through its derivatives, on neurons and glia via purinergic receptors. Although HCs are functional, i.e., open and close, under physiological and pathological conditions, single channel conductance of Px1 HCs is not well defined. Here, we developed a dual voltage clamp technique in HeLa cells overexpressing human Px1-YFP, and then applied this system to rodent spinal astrocytes. Single channels were recorded in cell attached patches and evoked with ramp cycles of 2 s duration and -/+ 80-100 mV amplitude or rectangular pulses through another pipette in whole cell clamp. Conductance of Px1 HC openings recorded during ramp stimuli ranged 25-110 pS. Based on their single channel conductances, Px1 HCs could be distinguished from Cx43 HCs and P2X7 receptors (P2X7Rs) in spinal astrocytes during dual voltage clamp experiments. Furthermore, we found that single channel activity of Cx43 HCs and P2X7Rs was increased, and that of Px1 HCs was decreased, in spinal astrocytes treated for 7h with FGF-1, a growth factor implicated in neurodevelopment, repair and inflammation.


Author(s):  
Manuel F. Muñoz ◽  
Theanne N. Griffith ◽  
Jorge E. Contreras

AbstractPain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher Edwards ◽  
Oleksandra Klekot ◽  
Larisa Halugan ◽  
Yuri Korchev

This paper suggests that ATP release induced by the SARS-CoV-2 virus plays a key role in the genesis of the major symptoms and complications of COVID-19. Infection of specific cells which contain the Angiotensin-Converting Enzyme 2 (ACE2) receptor results in a loss of protection of the Mineralocorticoid Receptor (MR). Local activation by cortisol stimulates the release of ATP initially into the basolateral compartment and then by lysosomal exocytosis from the cell surface. This then acts on adjacent cells. In the nose ATP acts as a nociceptive stimulus which results in anosmia. It is suggested that a similar paracrine mechanism is responsible for the loss of taste. In the lung ATP release from type 2 alveolar cells produces the non-productive cough by acting on purinergic receptors on adjacent neuroepithelial cells and activating, via the vagus, the cough reflex. Infection of endothelial cells results in the exocytosis of WeibelPalade bodies. These contain the Von Willebrand Factor responsible for micro-clotting and angiopoietin-2 which increases vascular permeability and plays a key role in the Acute Respiratory Distress Syndrome. To test this hypothesis this paper reports proof of concept studies in which MR blockade using spironolactone and low dose dexamethasone (SpiDex) was given to PCR-confirmed COVID-19 patients. In 80 patients with moderate to severe respiratory failure 40 were given SpiDex and 40 conventional treatment with high dose dexamethasone (HiDex). There was 1 death in the HiDex group and none in the SpiDex. As judged by clinical, biochemical and radiological parameters there were clear statistically significant benefits of SpiDex in comparison to HiDex. A further 20 outpatients with COVID-19 were given SpiDex. There was no control group and the aim was to demonstrate safety. No adverse effects were noted and no patient became hyperkalaemic. 90% were asymptomatic at 10 days. The very positive results suggest that blockade of the MR can produce major benefit in COVID19 patients. Further larger controlled studies of inpatients and outpatients are required not only for SARS-CoV-2 infection per se but also to determine if this treatment affects the incidence of Long COVID.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Francisco Jaque-Fernandez ◽  
Bruno Allard ◽  
Laloe Monteiro ◽  
Aude Lafoux ◽  
Corinne Huchet ◽  
...  

Pannexins are plasma membrane heptameric channels mediating ATP release from the cytosol to the extracellular space. Skeletal muscle activity is associated with Pannexin 1 (Panx1) channels activation, ATP release out to the extracellular space and subsequent activation of purinergic signaling pathways. In agreement, recent evidence has shown molecular and functional interactions between Panx1 and the excitation–contraction (EC) coupling machinery of skeletal muscle. In this framework, we tested whether pharmacological effectors of Panx1 affect EC coupling in differentiated muscle fibers. Using confocal detection of cytosolic Ca2+ in voltage-clamped mouse muscle fibers, we found that the Panx1 blocker probenecid (1 mM) affects intracellular Ca2+ handling and EC coupling: acute application of probenecid generates a rise in resting Ca2+ that also occurs in nominally Ca2+-free extracellular medium. This effect is associated with a reduction of Ca2+ release through the sarcoplasmic reticulum (SR) Ca2+ channel RYR1. The effect of probenecid persists with time, with muscle fibers incubated for 30 min in the presence of the drug exhibiting a 40% reduction in peak SR Ca2+ release. Under the same conditions, the other Panx1 blocker carbenoxolone (50 µM) produced a 70% reduction in peak SR Ca2+ release. Application of probenecid on electrically stimulated whole mouse muscle induced a slight rise in resting tension and a >50% reduction of tetanic force after 30 min of incubation. Our results provide further support for the strong links between Panx1 function and EC coupling. Because probenecid is used both in the clinic for several types of therapeutic benefits and as a hiding agent for doping in sport, our results question whether potential adverse muscular effects may have, so far, been overlooked.


Sign in / Sign up

Export Citation Format

Share Document