scholarly journals Characteristics and predictors of muscle strength deficit in mechanical ankle instability

2020 ◽  
Author(s):  
Zong-chen Hou ◽  
Xin Miao ◽  
Ying-fang Ao ◽  
Yue-lin Hu ◽  
Chen Jiao ◽  
...  

Abstract Purpose: Muscle strength training is a common strategy for treating chronic ankle instability (CAI), but the effectiveness decreases for mechanical ankle instability (MAI) patients with initial severe ligament injuries. The purpose of this study was to investigate the characteristics and the potential predictors of muscle strength deficit in MAI patients, with a view to proposing a more targeted muscle strength training strategy.Methods: A total of 220 MAI patients with confirmed initial lateral ankle ligament rupture and a postinjury duration of more than 6 months were included. All patients underwent a Biodex isokinetic examination of the ankle joints of both the affected and unaffected sides. Then, the associations between the limb symmetry index (LSI) (mean peak torque of the injury side divided by that of the healthy side) and the patients’ sex, body mass index, postinjury duration, presence of intra-articular osteochondral lesions, presence of osteophytes and ligament injury pattern (i.e., isolated anterior talofibular ligament (ATFL) injury or combined with calcaneofibular ligament injury) were analysed.Results: There was significantly weaker muscle strength on the affected side than on the unaffected side in all directions (p<0.05). The LSI in plantar flexion was significantly lower than that in dorsiflexion at 60°/s (0.87 vs 0.98, p<0.001). A lower LSI in eversion was significantly correlated with female sex (0.82 vs 0.94, p=0.016) and isolated ATFL injury (0.86 vs 0.95, p=0.012). No other factors were found to be associated with muscle strength deficits.Conclusion: MAI patients showed significant muscle strength deficits on the affected side, especially in plantar flexion. There were greater strength deficits in eversion in females and individuals with an isolated ATFL injury. Thus, a muscle strength training programme for MAI patients was proposed that focused more on plantar flexion training and eversion training for females and those with an isolated ATFL injury.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zong-chen Hou ◽  
Xin Miao ◽  
Ying-fang Ao ◽  
Yue-lin Hu ◽  
Chen Jiao ◽  
...  

Abstract Purpose Muscle strength training is a common strategy for treating chronic ankle instability (CAI), but the effectiveness decreases for mechanical ankle instability (MAI) patients with initial severe ligament injuries. The purpose of this study was to investigate the characteristics and the potential predictors of muscle strength deficit in MAI patients, with a view to proposing a more targeted muscle strength training strategy. Methods A total of 220 MAI patients with confirmed initial lateral ankle ligament rupture and a postinjury duration of more than 6 months were included. All patients underwent a Biodex isokinetic examination of the ankle joints of both the affected and unaffected sides. Then, the associations between the limb symmetry index (LSI) (mean peak torque of the injury side divided by that of the healthy side) and the patients’ sex, body mass index, postinjury duration, presence of intra-articular osteochondral lesions, presence of osteophytes and ligament injury pattern (i.e., isolated anterior talofibular ligament (ATFL) injury or combined with calcaneofibular ligament injury) were analysed. Results There was significantly weaker muscle strength on the affected side than on the unaffected side in all directions (p < 0.05). The LSI in plantar flexion was significantly lower than that in dorsiflexion at 60°/s (0.87 vs 0.98, p < 0.001). A lower LSI in eversion was significantly correlated with female sex (0.82 vs 0.94, p = 0.016) and isolated ATFL injury (0.86 vs 0.95, p = 0.012). No other factors were found to be associated with muscle strength deficits. Conclusion MAI patients showed significant muscle strength deficits on the affected side, especially in plantar flexion. There were greater strength deficits in eversion in females and individuals with an isolated ATFL injury. Thus, a muscle strength training programme for MAI patients was proposed that focused more on plantar flexion training and eversion training for females and those with an isolated ATFL injury.


2020 ◽  
Author(s):  
Zong-chen Hou ◽  
Xin Miao ◽  
Ying-fang Ao ◽  
Yue-lin Hu ◽  
Chen Jiao ◽  
...  

Abstract Purpose Muscle strength training is a common strategy for treating chronic ankle instability (CAI), but the effectiveness decreases for mechanical ankle instability (MAI) patients with initial severe ligament injuries. The purpose of this study was to investigate the characteristics and the potential predictors of muscle strength deficit in MAI patients, with a view to proposing a more targeted muscle strength training strategy. Methods A total of 220 MAI patients with confirmed initial lateral ankle ligament rupture and a postinjury duration of more than 6 months were included. All patients underwent a Biodex isokinetic examination of the ankle joints of both the affected and unaffected sides. Then, the associations between the limb symmetry index (LSI) (mean peak torque of the injury side divided by that of the healthy side) and the patients’ sex, body mass index, postinjury duration, presence of intra-articular osteochondral lesions, presence of osteophytes and ligament injury pattern (i.e., isolated anterior talofibular ligament (ATFL) injury or combined with calcaneofibular ligament injury) were analysed. Results There was significantly weaker muscle strength on the affected side than on the unaffected side in all directions ( p <0.05). The LSI in plantar flexion was significantly lower than that in dorsiflexion at 60°/s (0.87 vs 0.98, p <0.001). A lower LSI in eversion was significantly correlated with female sex (0.82 vs 0.94, p =0.016) and isolated ATFL injury (0.86 vs 0.95, p =0.012). No other factors were found to be associated with muscle strength deficits. Conclusion MAI patients showed significant muscle strength deficits on the affected side, especially in plantar flexion. There were greater strength deficits in eversion in females and individuals with an isolated ATFL injury. Thus, a muscle strength training programme for MAI patients was proposed that focused more on plantar flexion training and eversion training for females and those with an isolated ATFL injury.


2020 ◽  
Author(s):  
Zong-chen Hou ◽  
Xin Miao ◽  
Ying-fang Ao ◽  
Yue-lin Hu ◽  
Chen Jiao ◽  
...  

Abstract Purpose: Muscle strength training is a common strategy for treating chronic ankle instability (CAI), but the effectiveness decreases for mechanical ankle instability (MAI) patients with initial severe ligament injuries. The purpose of this study was to investigate the characteristics and the potential predictors of muscle strength deficit in MAI patients, with a view to proposing a more targeted muscle strength training strategy.Methods: A total of 220 MAI patients with confirmed initial lateral ankle ligament rupture and a postinjury duration of more than 6 months were included. All patients underwent a Biodex isokinetic examination of the ankle joints of both the affected and unaffected sides. Then, the associations between the limb symmetry index (LSI) (mean peak torque of the injury side divided by that of the healthy side) and the patients’ sex, body mass index, postinjury duration, presence of intra-articular osteochondral lesions, presence of osteophytes and ligament injury pattern (i.e., isolated anterior talofibular ligament (ATFL) injury or combined with calcaneofibular ligament injury) were analysed.Results: There was significantly weaker muscle strength on the affected side than on the unaffected side in all directions (p<0.05). The LSI in plantar flexion was significantly lower than that in dorsiflexion at 60°/s (0.87 vs 0.98, p<0.001). A lower LSI in eversion was significantly correlated with female sex (0.82 vs 0.94, p=0.016) and isolated ATFL injury (0.86 vs 0.95, p=0.012). No other factors were found to be associated with muscle strength deficits.Conclusion: MAI patients showed significant muscle strength deficits on the affected side, especially in plantar flexion. There were greater strength deficits in eversion in females and individuals with an isolated ATFL injury. Thus, a muscle strength training programme for MAI patients was proposed that focused more on plantar flexion training and eversion training for females and those with an isolated ATFL injury.


2018 ◽  
Vol 47 (2) ◽  
pp. 431-437 ◽  
Author(s):  
Kenneth J. Hunt ◽  
Helder Pereira ◽  
Judas Kelley ◽  
Nicholas Anderson ◽  
Richard Fuld ◽  
...  

Background: Acute inversion ankle sprains are among the most common musculoskeletal injuries. Higher grade sprains, including anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) injury, can be particularly challenging. The precise effect of CFL injury on ankle instability is unclear. Hypothesis: CFL injury will result in decreased stiffness, decreased peak torque, and increased talar and calcaneal motion and will alter ankle contact mechanics when compared with the uninjured ankle and the ATFL-only injured ankle in a cadaveric model. Study Design: Descriptive laboratory study. Methods: Ten matched pairs of cadaver specimens with a pressure sensor in the ankle joint and motion trackers on the fibula, talus, and calcaneus were mounted on a material testing system with 20° of ankle plantarflexion and 15° of internal rotation. Intact specimens were axially loaded to body weight and then underwent inversion along the anatomic axis of the ankle from 0° to 20°. The ATFL and CFL were sequentially sectioned and underwent inversion testing for each condition. Linear mixed models were used to determine significance for stiffness, peak torque, peak pressure, contact area, and inversion angles of the talus and calcaneus relative to the fibula across the 3 conditions. Results: Stiffness and peak torque did not significantly decrease after sectioning of the ATFL but decreased significantly after sectioning of the CFL. Peak pressures in the tibiotalar joint decreased and mean contact area increased significantly after CFL release. Significantly more inversion of the talus and calcaneus as well as calcaneal medial displacement was seen with weightbearing inversion after sectioning of the CFL. Conclusion: The CFL contributes considerably to lateral ankle instability. Higher grade sprains that include CFL injury result in significant decreases in rotation stiffness and peak torque, substantial alteration of contact mechanics at the ankle joint, increased inversion of the talus and calcaneus, and increased medial displacement of the calcaneus. Clinical Relevance: Repair of an injured CFL should be considered during lateral ligament reconstruction, and there may be a role for early repair in high-grade injuries to avoid intermediate and long-term consequences of a loose or incompetent CFL.


2019 ◽  
Vol 47 (8) ◽  
pp. 1921-1930
Author(s):  
Hannelore Boey ◽  
Stefaan Verfaillie ◽  
Tassos Natsakis ◽  
Jos Vander Sloten ◽  
Ilse Jonkers

Background: Altered kinematics and persisting ankle instability have been associated with degenerative changes and osteochondral lesions. Purpose: To study the effect of ligament reconstruction surgery with suture tape augmentation (isolated anterior talofibular ligament [ATFL] vs combined ATFL and calcaneofibular ligament [CFL]) after lateral ligament ruptures (combined ATFL and CFL) on foot-ankle kinematics during simulated gait. Study Design: Controlled laboratory study. Methods: Five fresh-frozen cadaveric specimens were tested in a custom-built gait simulator in 5 different conditions: intact, ATFL rupture, ATFL-CFL rupture, ATFL-CFL reconstruction, and ATFL reconstruction. For each condition, range of motion (ROM) and the average angle (AA) in the hindfoot and midfoot joints were calculated during the stance phase of normal and inverted gait. Results: Ligament ruptures mainly changed ROM in the hindfoot and the AA in the hindfoot and midfoot and influenced the kinematics in all 3 movement directions. Combined ligament reconstruction was able to restore ROM in inversion-eversion in 4 of the 5 joints and ROM in internal-external rotation and dorsiflexion-plantarflexion in 3 of the 5 joints. It was also able to restore the AA in inversion-eversion in 2 of the 5 joints, the AA in internal-external rotation in all joints, and the AA in dorsiflexion-plantarflexion in 1 of the joints. Isolated ATFL reconstruction was able to restore ROM in inversion-eversion and internal-external rotation in 3 of the 5 joints and ROM in dorsiflexion-plantarflexion in 2 of the 5 joints. Isolated reconstruction was also able to restore the AA in inversion-eversion and dorsiflexion-plantarflexion in 2 of the joints and the AA in internal-external rotation in 3 of the joints. Both isolated reconstruction and combined reconstruction were most successful in restoring motion in the tibiocalcaneal and talonavicular joints and least successful in restoring motion in the talocalcaneal joint. However, combined reconstruction was still better at restoring motion in the talocalcaneal joint than isolated reconstruction (1/3 for ROM and 1/3 for the AA with isolated reconstruction compared to 1/3 for ROM and 2/3 for the AA with combined reconstruction). Conclusion: Combined ATFL-CFL reconstruction showed better restored motion immediately after surgery than isolated ATFL reconstruction after a combined ATFL-CFL rupture. Clinical Relevance: This study shows that ligament reconstruction with suture tape augmentation is able to partially restore kinematics in the hindfoot and midfoot at the time of surgery. In clinical applications, where the classic Broström-Gould technique is followed by augmentation with suture tape, this procedure may protect the repaired ligament during healing by limiting excessive ROM after a ligament rupture.


2021 ◽  
pp. 107110072199707
Author(s):  
Yasunari Ikuta ◽  
Tomoyuki Nakasa ◽  
Junichi Sumii ◽  
Akinori Nekomoto ◽  
Nobuo Adachi

Background: Rotational ankle instability (RAI) is associated with the faster onset of severe ankle osteoarthritis via dysfunction of the anterior talofibular ligament, calcaneofibular ligament, and deltoid ligament. No specific clinical examination is available for RAI, and diagnostic imaging has limitations in evaluating ligament degradation. This study investigated the deltoid ligament degeneration using Hounsfield unit (HU) values on computed tomography (CT) images. Methods: Patients were enrolled in this retrospective analysis if they had undergone magnetic resonance imaging (MRI) and CT scans of the ankle. The chronic ankle instability (CAI) group comprised 20 ankles with CAI (9 men, 11 women; mean age, 28.7 years) and the control group comprised 28 ankles (16 men, 12 women, mean age, 41.3 years). The average HU values of the deep posterior tibiotalar ligament (dPTL) that constitutes the deltoid ligament were measured on coronal CT images, and MRI results were used as a reference. All patients were subdivided based on the MRI findings of dPTL injury such as fascicular disruption, irregularity, and the loss of striation. Results: A strong negative correlation was identified between age and HU values for all patients (Spearman ρ = −0.63; P < .001). The mean HU values of the dPTL for participants aged <60 years were 81.0 HU for the control group (21 ankles) and 69.5 HU for the CAI group ( P = .0075). No significant differences in the HU values were observed for the dPTL among the MRI subgroups. Conclusion: In addition to the conventional imaging examination such as stress radiographs and MRI, HU measurements of CT images could be useful for quantitatively and noninvasively evaluating degenerative changes in the deltoid ligament for CAI patients to assist the diagnosis of RAI. Level of Evidence: Level III. case-control study.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Mohammed Khalid Faqi ◽  
Abdulla AlJawder ◽  
Fahad Alkhalifa ◽  
Ali H. Almajed

The Lauge-Hansen (LH) classification attempts to predict patterns of ankle injuries based upon the preceding mechanism of injury. Although it is widely used in clinical practice, it has been criticized mainly due to numerous reports of cases conflicting the prediction system. Here, we report a case of a 32-year-old male who sustained a Weber B fracture of the lateral malleolus following a supination ankle injury, which was treated conservatively, following which the patient presented with ankle instability and was found to have concurrent anterior talofibular ligament tear. Critical review of the LH classification along with its shortcomings is discussed.


2000 ◽  
Vol 21 (6) ◽  
pp. 486-491 ◽  
Author(s):  
Yuki Tochigi ◽  
Kazuhisa Takahashi ◽  
Masatsune Yamagata ◽  
Tamotsu Tamaki

The present study aims to clarify the influence of the interosseous talocalcaneal ligament (ITCL) injury associated with injury to the lateral ankle ligaments on the ankle-subtalar joint complex motion under conditions of physiologic loading. We conducted mechanical tests using five fresh cadaveric lower extremities. Each specimen was mounted in the loading device and an axial cyclic load from 9.8 to 686 N was applied. Three-dimensional rotations of the ankle and the subtalar joint were measured simultaneously by a linkage electric goniometer. Mechanical tests were repeated after sectioning of the anterior talofibular ligament (ATFL), and again after additional sectioning of the ITCL. In the intact condition, the ankle and the subtalar joints rotated consistently with increase of the load. The predominant rotations were plantar flexion and adduction at the ankle joint, with some eversion demonstrated at the subtalar joint. Although ATFL sectioning did not significantly change the motion of the two joints, additional sectioning of the ITCL significantly increased adduction and total rotation of the ankle joint. The present study demonstrated that a combined injury of the ATFL and the ITCL can induce anterolateral rotatory instability of the ankle joint under conditions of axial loading.


Sign in / Sign up

Export Citation Format

Share Document