scholarly journals On-machine measurement and error analysis for narrow neck thickness based on ultra-precision machine tool

Author(s):  
Xin Jin ◽  
Ruilin Gao ◽  
Chaojiang Li ◽  
Zhongpeng Zheng ◽  
Muzheng Xiao ◽  
...  

Abstract As flexible joint is a typical low-rigidity micro part, which have four narrow neck structures evenly distributed around its central axis, it is necessary to strictly control the dimensional accuracy of the narrow necks to improve the consistency of stiffness. However, the radius of the arc of the narrow necks is less than 2mm , and the thickness of thinnest part of the necks formed by two adjacent arcs is only tens of microns, which also has sub-micron accuracy requirement. These cross-scale dimensional characteristics and accuracy requirements give rise to extremely difficulty on the measuring process. In this paper, an on-machine measurement method for the semicircular narrow necks was presented and a measuring device was developed based on the comparative principle by making full use of the high linearity characteristic in the small measuring range of the sensor probes. Meanwhile, the on-machine measurement process based on ultra-precision machine tools was also introduced in details. The experiments results show that the measurement error of the method proposed is less than 0.2 µm , and the repeatability is less than 0.1 μm , which meet the measuring requirement of flexible joint. Furthermore, the theoretical error and the uncertainty caused by probe position, measurement force, environmental factor and the accuracy of the sensor was analyzed, which could provide further evidences to improve the measuring accuracy of micro-scale hybrid surface texture.

2021 ◽  
Author(s):  
Xin Jin ◽  
Ruilin Gao ◽  
Chaojiang Li ◽  
Zhong peng Zheng ◽  
zhen Zuo

Abstract As flexible joint is a typical low-rigidity micro part, which have four narrow neck structures evenly distributed around its central axis, it is necessary to strictly control the dimensional accuracy of the narrow necks to improve the consistency of stiffness. However, the radius of the arc of the narrow necks is less than 2mm, and the thickness of thinnest part of the necks formed by two adjacent arcs is only tens of microns, which also has sub-micron accuracy requirement. These cross-scale dimensional characteristics and accuracy requirements give rise to extremely difficulty on the measuring process. In this paper, an on-machine measurement method for the semicircular narrow necks was presented and a measuring device was developed based on the comparative principle by making full use of the high linearity characteristic in the small measuring range of the sensor probes. Meanwhile, the on-machine measurement process based on ultra-precision machine tools was also introduced in details. The experiments results show that the uncertainty of the measurement method proposed is less than 0.2µm, and the repeatability is less than 0.1μm, which meet the measuring requirement of flexible joint. Furthermore, the effect of probe position, measurement force, environmental factor and the accuracy of the sensor on total measuring accuracy was analyzed, which could provide further evidences to improve the measuring accuracy. of micro-scale hybrid surface texture.


Author(s):  
Paul Shore ◽  
Paul Morantz

This paper provides a perspective on the development of ultra-precision technologies: What drove their evolution and what do they now promise for the future as we face the consequences of consumption of the Earth’s finite resources? Improved application of measurement is introduced as a major enabler of mass production, and its resultant impact on wealth generation is considered. This paper identifies the ambitions of the defence, automotive and microelectronics sectors as important drivers of improved manufacturing accuracy capability and ever smaller feature creation. It then describes how science fields such as astronomy have presented significant precision engineering challenges, illustrating how these fields of science have achieved unprecedented levels of accuracy, sensitivity and sheer scale. Notwithstanding their importance to science understanding, many science-driven ultra-precision technologies became key enablers for wealth generation and other well-being issues. Specific ultra-precision machine tools important to major astronomy programmes are discussed, as well as the way in which subsequently evolved machine tools made at the beginning of the twenty-first century, now provide much wider benefits.


2010 ◽  
Vol 455 ◽  
pp. 632-636
Author(s):  
R.J. Song ◽  
J.L. Niu ◽  
Dong Hai Chen

Ultra-precision machine tools is an important machinery equipment to implement ultra-precision machining. Current development and the trend of the ultra-precision machine tools was analyzed. The factors influencing machining accuracy were pointed out from the viewpoint of system. Some suggestions were put forward on the domestic development and research of the ultra-precision machine tools.


Sign in / Sign up

Export Citation Format

Share Document