aerostatic bearing
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 0)

2022 ◽  
pp. 1-17
Author(s):  
Jianhua Yao ◽  
Ziqiang Yin ◽  
Ning Chai ◽  
Songtao Meng ◽  
Yanlong Li


2021 ◽  
Vol 2095 (1) ◽  
pp. 012072
Author(s):  
Jile Jiang ◽  
Kun Wu ◽  
Bin Guo ◽  
Shi Wu ◽  
Zhimin Zhang

Abstract A 1 kN-m deadweight torque standard machine is established in National Institute of Metrology, China. The torque range is 5N·m-1200 N·m. The deadweights utilized in the machine can generate the torque of 1200 N·m, 600N·m, 360N·m, 240N·m, 120N·m and 60 N·m, respectively. The torque can be applied both in clock-wise and counter clock-wise direction in sequencial loading process. The aerostatic bearing is introduced to the torque standard machine in order to eliminate the influence of friction. The symmetric V type rotor and stator are used to provide the reliable support both in axial and radial direction. The material of the lever arm is invar alloy, performing with the minimum deformation with the change of the ambient temperature. The counter torque part will make the precise adjustment to make a horizontal alignment of the lever arm. The relative standard uncertainty of the torque generated by the machine is less than 1e-5.



2021 ◽  
Vol 158 ◽  
pp. 107775
Author(s):  
Jianbo Zhang ◽  
Dongjiang Han ◽  
Mingbo Song ◽  
Zhongliang Xie ◽  
Zhushi Rao ◽  
...  


2021 ◽  
Author(s):  
Karan Singh Jamwal ◽  
Anant Kumar Singh ◽  
Kunal Arora ◽  
Sunil Kumar Paswan

Abstract Aerostatic bearing is an ultra-precision component that uses a spindle surrounded by a thin film of air. Due to the high accuracy of aerostatic bearing, the demand for these components is very high in electronic, instrumentation, healthcare, and other manufacturing or processing industries. In the present work, the main focused area is on the experimental determination of the effect of roughness parameter on the performance of the aerostatic journal and thrust bearings. To achieve the aim, the aerostatic bearing is designed based on theoretical analysis. The present design is numerically investigated by simulation of airflow in ANSYS Fluent with computational fluid dynamics module. The results from the simulation are validated by the results generated for pressure distribution in previous researches. After performing the finishing on the bearing and spindle surface, the manufactured components are assembled for analysing the variation in radial and axial loads acting on the spindle with the spindle displacement (1-5 μm) in the direction of the load at supply pressures (3-6 bar) in the clearance of 30 μm. For surface improvement of the air bearing, three different techniques are used namely machining, grinding, and magnetorheological finishing. For each roughness reduction technique, the variation in axial and radial loads acting on the spindle is determined with variation in spindle displacement. The experimental results showed the increase in load capacity due to improvement in the surface finish for journal bearing and thrust bearing at 5 µm displacement in the spindle is found to be 0.68 N for machining to grinding and 2.0 N from grinding to magnetorheological finishing respectively. The results determined for the surface finish parameter reveals the effect of surface roughness on the load-carrying capacity of the aerostatic journal and thrust bearing. The current study on the surface finishing of aerostatic bearing is found effective for the applications such as drives in production machines where good grade of surface finish are the major parameters for improving the overall functional efficiency.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shixiong Chen ◽  
Qiyong Zhang ◽  
Bao Fu ◽  
Zhifan Liu ◽  
Shanshan Li

Purpose The purpose of this paper is to provide a solution for Reynolds equation with both throttling term and reverse throttling term and provides a reference for changing damping of hydrostatic bearing. Design/methodology/approach The reverse throttling term is introduced into the Reynolds equation, and the adaptive damping factor is used in the Newton iteration method to improve convergence of numerical calculations. The static and dynamic performances of this bearing are numerically investigated by the finite-element method. Findings The results indicate that the reflux orifices lead to a decrease in load capacity at a high eccentricity ratio. Additionally, the mass inflow rate is increased; however, the additional inflow increase can be controlled by enhanced backpressure of the reflux orifice. Nevertheless, the bearing with the reflux orifice shows superiority in resisting high-frequency disturbances and enhances direct damping by 20% under a high backpressure. Originality/value This work presents an adaptive Newton damping iterative method for solving Reynolds equation with both throttling term and reverse throttling term. This work also provides a new idea for bearing structure design in improving damping.



Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1492
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Lilia Strok ◽  
Yuri Pikalov ◽  
...  

The disadvantage of aerostatic bearings is their low dynamic quality. The negative impact on the dynamic characteristics of the bearing is exerted by the volume of air contained in the bearing gap, pockets, and microgrooves located at the outlet of the feeding diaphragms. Reducing the volume of air in the flow path is a resource for increasing the dynamic quality of the aerostatic bearing. This article presents an improved design of an axial aerostatic bearing with simple diaphragms, an annular microgroove, and an elastic suspension of the movable center of the supporting disk. A mathematical model is presented and a methodology for calculating the static characteristics of a bearing and dynamic quality indicators is described. The calculations were carried out using dimensionless quantities, which made it possible to reduce the number of variable parameters. A new method for solving linearized and Laplace-transformed boundary value problems for transformants of air pressure dynamic functions in the bearing layer was applied, which made it possible to obtain a numerical solution of problems sufficient for practice accuracy. The optimization of the criteria for the dynamic quality of the bearing was carried out. It is shown that the use of an elastic suspension of the support center improves its dynamic characteristics by reducing the volume of compressed air in the bearing layer and choosing the optimal volume of the microgroove.



Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 55
Author(s):  
Federico Colombo ◽  
Luigi Lentini ◽  
Terenziano Raparelli ◽  
Andrea Trivella ◽  
Vladimir Viktorov

Even though the behavior of aerostatic bearings has for long been the topic of extensive research, there are still many aspects that require further investigation. Among these, the identification of the discharge coefficients is one the most crucial. This paper presents a hybrid method to identify the discharge coefficients of aerostatic bearing orifices. The method is termed as hybrid since it exploits experimental data and the equations of the analytical model of a circular and centrally fed aerostatic pad. The obtained results demonstrate the accuracy of the method. The proposed method further offers practical advantages compared to the conventional methods.



Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 85
Author(s):  
Ning Gou ◽  
Kai Cheng ◽  
Dehong Huo

Aerostatic bearing slideways have been increasingly applied in the precision engineering industry and other high-tech sectors over the last two decades or so, due to their considerable advantages over mechanical slideways in terms of high motion accuracy, high speeds, low friction, and environment-friendly operations. However, new challenges in air bearings design and analysis have been occurring and often imposed along the journeys. An industrial-feasible approach for the design and development of aerostatic bearing slideways as standard engineering products is essential and much needed particularly for addressing their rapid demands in diverse precision engineering sectors, and better applications and services in a continuous sustainable manner. This paper presents the multiscale modelling and analysis-based approach for design and development of the aerostatic bearing slideways and its digital twin. The multiscale modelling and analysis and the associated simulation development can be the kernel of the digital twin, which cover the mechanical design, direct drive and control, dynamics tuning of the slideway, and their entire mechatronic system integration. Using this approach and implementation, the performance of an aerostatic bearing slideway can be predicted and assessed in the process. The implementation perspectives for the sideway digital twin are presented and discussed in steps. The digital simulations and digital twin system can be fundamentally important for continuously improving the design and development of aerostatic bearing slideways, and their applications and services in the context of industry 4.0 and beyond.



Measurement ◽  
2021 ◽  
Vol 174 ◽  
pp. 108996
Author(s):  
Hao Wu ◽  
Shuting Wang ◽  
Yuanlong Xie ◽  
Suping Chang ◽  
Yanqing Zhao


Sign in / Sign up

Export Citation Format

Share Document