scholarly journals Total-body 18F-FDG PET Scan in Oncological Patients: How Fast could it be?

Author(s):  
Pengcheng Hu ◽  
Yiqiu Zhang ◽  
Haojun Yu ◽  
Shuguang Chen ◽  
Hui Tan ◽  
...  

Abstract Purpose: The aim of the study was to explore a fast PET scan protocol of the total-body uEXPLORER scanner by assessing the image quality consistent to that of a conventional digital PET/CT scanner both from the phantom and clinical perspectives.Methods: The phantom study using a NEMA/IEC NU-2 body phantom was performed both on a total-body PET/CT (uEXPLORER) and a digital routine PET/CT (uMI 780), with hot sphere to background activity concentration ratio of 4:1. The contrast recovery coefficient (CRC), background variability (BV), recovery coefficient RCmax and RCmean were assessed and compared between that in uEXPLORER with the different scanning duration and reconstruction protocols and that in uMI 780 with clinical settings. The coefficient of variation (COV) of the uMI 780 with clinical settings were calculated and used as a threshold to determine the optimized scanning duration and reconstruction protocols were, which can provide a consistent image quality for the two scanners. And subsequently, the proposed protocol was validated by 30 oncological patients. Images acquired in uMI 780 with a 2-3 minute for each bed position were referred as G780. All PET raw data were reconstructed using data-cutting technique to simulate a 30s, 45s or 60s acquisition duration on uEXPLORER. The iterations were 2 and 3 for uEXPLORER, referred as G30s_3i, G45s_2i, G45s_3i, G60s_2i, and G60s_3i. A 5-point Likert scale was used in the qualitative analysis to assess the image quality. The image quality was also compared with the liver COV, the lesion target-to-background ratio (TBR), and the lesion signal-to-noise ratio (SNR).Results: In the phantom study, CRC, BV, RCmax and RCmean in uEXPLORER with different scanning duration and reconstruction iterations were compared with that in uMI 780 with clinical settings and a minor fluctuation was found among different scanning durations. COV of the uMI 780 with clinical settings was 11.6% and determined protocol with a 30-45s scanning duration and 2 or 3 iterations to provide a similar image quality.In the quantitative analysis on the clinical images, there was no significant difference between G780 and G45s_3i. All the other groups in uEXPLORER with a 45s- and above acquisition showed a significantly improved image quality than that in uMI 780 with clinical settings. Comparing the liver COV, there was no significantly difference between G780 and G30s_3i. And no significant difference in lesion TBR was identified between G780 and G45s_2i, while uEXPLORER had a better performance in lesion SNR compared to that in uMI 780 with clinical settings. Conclusions: This study demonstrated a fast PET protocol with a 30-45s acquisition in uEXPLORER with consistent image quality to that in uMI 780 with clinical settings.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background Using phantoms and clinical studies in prone hanging breast imaging, we assessed the image quality of a commercially available dedicated breast PET (dbPET) at the detector’s edge, where mammary glands near the chest wall are located. These are compared to supine PET/CT breast images of the same clinical subjects. Methods A breast phantom with four spheres (16-, 10-, 7.5-, and 5-mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background activity concentration ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for all spheres, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard supine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/CT. Results Closer to the detector’s edge, the CNR and CRC of all spheres decreased while the CVB increased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38 ± 6.41 vs 6.73 ± 3.5, p = 0.0006) and non-peripheral (12.44 ± 5.94 vs 7.71 ± 7.1, p = 0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups. Conclusion The phantom study revealed poorer image quality at < 2-cm distance from the detector’s edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Purpose : We assessed image quality of dedicated breast positron emission tomography (dbPET) at the detector's edge by phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm in diameter) was filled with 18 F-fluorodeoxyglucose solution of sphere-to-background ratio was 8:1. It was positioned such that the spheres were five different positions from the top edge to the centre of the detector and scanned for 5 min in each position. Reconstructed images were visually evaluated, and % background variability ( %N 5mm ), % contrast ( %Q H ,5mm ), contrast-to-noise ratio ( Q H ,5mm / N 5mm ), and coefficient of variation of the background ( CV background ) were calculated. Next, tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was also compared between dbPET and PET/computed tomography (CT).Results: As closer to the detector’s edge, the %N 5mm and CV background increased and %Q H ,5mm and Q H ,5mm / N 5mm decreased in the phantom study. The disadvantages of this placement were visually confirmed. With regard to clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.1±6.2 vs. 6.5±3.4, p =0.0001) and non-peripheral (13.1±7.1 vs. 7.7±7.4, p =0.0004) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.1±6.2 vs. 13.1±7.1, p= 0.6367).Conclusion : In the phantom study, the image quality decreased closer to the detector’s edge than at a depth of 1/8. In clinical studies, however, the lesion detectability of dbPET was the same even if the lesion was close to the detector’s edge or not, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: We assessed image quality of dedicated breast positron emission tomography (dbPET) at the detector's edge by phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and % background variability (%N5mm), % contrast (%QH,5mm), and contrast-to-noise ratio (QH,5mm/N5mm) for the 5 mm sphere; and coefficient of variation of the background (CVbackground) were calculated. Subsequently, clinical cases were analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/computed tomography (CT).Results: Closer to the detector’s edge, the %N5mm and CVbackground increased and %QH,5mm and QH,5mm/N5mm decreased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.1±6.2 vs. 6.5±3.4, p=0.0001) and non-peripheral (13.1±7.1 vs. 7.7±7.4, p=0.0004) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.1±6.2 vs. 13.1±7.1, p=0.6367).Conclusion: The phantom study revealed poorer image quality closer to the detector edge at a depth of 1/8 of the axial field of view (FOV) than at other more central parts. In clinical studies, however, lesion detectability of dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are within the FOV, even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: Using phantoms and clinical studies in prone hanging breast imaging, we assessed the image quality of a commercially available dedicated breast PET (dbPET) at the detector's edge, where mammary glands near the chest wall are located. These are compared to supine PET/CT breast images of the same clinical subjects.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background activity concentration ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for the 5-mm sphere, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard supine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/CT.Results: Closer to the detector’s edge, the CNR and CRC decreased while the CVB increased in the phantom study for all sphere sizes. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38±6.41 vs 6.73±3.5, p=0.0006) and non-peripheral (12.44±5.94 vs 7.71±7.1, p=0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups.Conclusion: The phantom study revealed poorer image quality at <2 cm distance from the detector's edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2020 ◽  
Vol 47 (11) ◽  
pp. 2507-2515 ◽  
Author(s):  
Yi-Qiu Zhang ◽  
Peng-Cheng Hu ◽  
Run-Ze Wu ◽  
Yu-Shen Gu ◽  
Shu-Guang Chen ◽  
...  

2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: The dedicated breast positron emission tomography (dbPET) scanner (Elmamo, Shimadzu, Kyoto, Japan) has received approval from the Japanese Pharmaceutical Affairs Law and is commercially available in Japan. We assessed image quality of dbPET at the detector's edge, where the mammary glands near the chest wall are located in phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for the 5-mm sphere, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard spine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/computed tomography (CT).Results: Closer to the detector’s edge, the CNR and CRC decreased while the CVB increased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38±6.41 vs 6.73±3.5, p=0.0006) and non-peripheral (12.44±5.94 vs 7.71±7.1, p=0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.4±6.4 vs 12.4±5.9, p=0.8261).Conclusion: The phantom study revealed poorer image quality closer to the detector edge at a depth of <2 cm from the detector's edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jenny Oddstig ◽  
Gustav Brolin ◽  
Elin Trägårdh ◽  
David Minarik

Abstract Background A novel generation of PET scanners based on silicon (Si)-photomultiplier (PM) technology has recently been introduced. Concurrently, there has been development of new reconstruction methods aimed at increasing the detectability of small lesions without increasing image noise. The combination of new detector technologies and new reconstruction algorithms has been found to increase image quality. However, it is unknown to what extent the demonstrated improvement of image quality is due to scanner hardware development or improved reconstruction algorithms. To isolate the contribution of the hardware, this study aimed to compare the ability to detect small hotspots in phantoms using the latest generation SiPM-based PET/CT scanner (GE Discovery MI) relative to conventional PM-based PET/CT scanner (GE Discovery 690), using identical reconstruction protocols. Materials and methods Two different phantoms (NEMA body and Jasczcak) with fillable spheres (31 μl to 26.5 ml) and varying sphere-to-background-ratios (SBR) were scanned in one bed position for 15–600 s on both scanners. The data were reconstructed using identical reconstruction parameters on both scanners. The recovery-coefficient (RC), noise level, contrast (spherepeak/backgroundpeak-value), and detectability of each sphere were calculated and compared between the scanners at each acquisition time. Results The RC-curves for the NEMA phantom were near-identical for both scanners at SBR 10:1. For smaller spheres in the Jaszczak phantom, the contrast was 1.22 higher for the DMI scanner at SBR 15:1. The ratio decreased for lower SBR, with a ratio of 1.03 at SBR 3.85:1. Regarding the detectability of spheres, the sensitivity was 98% and 88% for the DMI and D690, respectively, for SBR 15:1. For SBR 7.5, the sensitivity was 75% and 83% for the DMI and D690, respectively. For SBR 3.85:1, the sensitivity was 43% and 30% for the DMI and D690, respectively. Conclusion Marginally higher contrast in small spheres was seen for the SiPM-based scanner but there was no significant difference in detectability between the scanners. It was difficult to detect differences between the scanners, suggesting that the SiPM-based detectors are not the primary reason for improved image quality.


2021 ◽  
Author(s):  
Jie Xiao ◽  
Haojun Yu ◽  
Xiuli Sui ◽  
Yan Hu ◽  
Cao Yanyan ◽  
...  

Abstract Purpose PET image quality is influenced by the patient size according to the current guideline. The purpose was to propose an optimized dose regimen to yield a constant image quality independent of patient size to meet the clinical needs.Methods A first patient cohort of 78 consecutives for oncological patients (59.7±13.7 years) who underwent a total-body PET/CT scan were retrospectively enrolled to develop the regimen. The patients were equally distributed in four BMI groups according to WHO criteria. The liver SNR (Signal noise ratio, SNRL) was obtained through manually drawing ROIs and normalized (SNRnorm) by the injected activity and acquisition time. And fits of SNRnorm against different patient-dependent parameters were performed to determine the best correlating parameter and fit method. A qualitative assessment on image quality was performed using a 5-point Likert scale to determine the acceptable threshold of SNRL. And thus, an optimized regimen was proposed and validated by a second patient cohort with prospectively enrolled 38 oncological patients. Results The linear fit showed SNRnorm was the strongest correlation (R2 = 0.69) with the BMI than other patient-dependent parameters. The qualitative assessment revealed a SNRL of 14.0 as a threshold to achieve a sufficient image quality. The optimized dose regimen was determined as a quadratic relation with BMI: Injected activity = 39.2 MBq/(-0.03*BMI+1.49)2. In the validation study, the SNRL no longer decreased with the increase of BMI. There was no significant difference of the image quality, the SNRL, between different BMI groups (p > 0.05). In addition, the injected activity was reduced by 75.6±2.9 %, 72.1±4.0 %, 67.1±4.4 % and 64.8±3.5 % compared to the first cohort for the four BMI groups, respectively.Conclusion The study recommended a quadratic relation between the 18F-FDG injected activity and the patient’s BMI and propose a regimen for total-body PET imaging. In the regimen, the image quality can maintain in a constant level independent of patient size and meet the clinical requirement even with a reduced injected activity.


Sign in / Sign up

Export Citation Format

Share Document