scholarly journals Evaluation of image quality at the detector’s edge of dedicated breast positron emission tomography: Can small breast cancer near the chest wall be detected ?

2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Purpose : We assessed image quality of dedicated breast positron emission tomography (dbPET) at the detector's edge by phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm in diameter) was filled with 18 F-fluorodeoxyglucose solution of sphere-to-background ratio was 8:1. It was positioned such that the spheres were five different positions from the top edge to the centre of the detector and scanned for 5 min in each position. Reconstructed images were visually evaluated, and % background variability ( %N 5mm ), % contrast ( %Q H ,5mm ), contrast-to-noise ratio ( Q H ,5mm / N 5mm ), and coefficient of variation of the background ( CV background ) were calculated. Next, tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was also compared between dbPET and PET/computed tomography (CT).Results: As closer to the detector’s edge, the %N 5mm and CV background increased and %Q H ,5mm and Q H ,5mm / N 5mm decreased in the phantom study. The disadvantages of this placement were visually confirmed. With regard to clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.1±6.2 vs. 6.5±3.4, p =0.0001) and non-peripheral (13.1±7.1 vs. 7.7±7.4, p =0.0004) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.1±6.2 vs. 13.1±7.1, p= 0.6367).Conclusion : In the phantom study, the image quality decreased closer to the detector’s edge than at a depth of 1/8. In clinical studies, however, the lesion detectability of dbPET was the same even if the lesion was close to the detector’s edge or not, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall even in young women with small breasts.

2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: We assessed image quality of dedicated breast positron emission tomography (dbPET) at the detector's edge by phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and % background variability (%N5mm), % contrast (%QH,5mm), and contrast-to-noise ratio (QH,5mm/N5mm) for the 5 mm sphere; and coefficient of variation of the background (CVbackground) were calculated. Subsequently, clinical cases were analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/computed tomography (CT).Results: Closer to the detector’s edge, the %N5mm and CVbackground increased and %QH,5mm and QH,5mm/N5mm decreased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.1±6.2 vs. 6.5±3.4, p=0.0001) and non-peripheral (13.1±7.1 vs. 7.7±7.4, p=0.0004) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.1±6.2 vs. 13.1±7.1, p=0.6367).Conclusion: The phantom study revealed poorer image quality closer to the detector edge at a depth of 1/8 of the axial field of view (FOV) than at other more central parts. In clinical studies, however, lesion detectability of dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are within the FOV, even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: The dedicated breast positron emission tomography (dbPET) scanner (Elmamo, Shimadzu, Kyoto, Japan) has received approval from the Japanese Pharmaceutical Affairs Law and is commercially available in Japan. We assessed image quality of dbPET at the detector's edge, where the mammary glands near the chest wall are located in phantom and clinical studies.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for the 5-mm sphere, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard spine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/computed tomography (CT).Results: Closer to the detector’s edge, the CNR and CRC decreased while the CVB increased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38±6.41 vs 6.73±3.5, p=0.0006) and non-peripheral (12.44±5.94 vs 7.71±7.1, p=0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups (12.4±6.4 vs 12.4±5.9, p=0.8261).Conclusion: The phantom study revealed poorer image quality closer to the detector edge at a depth of <2 cm from the detector's edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background Using phantoms and clinical studies in prone hanging breast imaging, we assessed the image quality of a commercially available dedicated breast PET (dbPET) at the detector’s edge, where mammary glands near the chest wall are located. These are compared to supine PET/CT breast images of the same clinical subjects. Methods A breast phantom with four spheres (16-, 10-, 7.5-, and 5-mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background activity concentration ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for all spheres, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard supine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/CT. Results Closer to the detector’s edge, the CNR and CRC of all spheres decreased while the CVB increased in the phantom study. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38 ± 6.41 vs 6.73 ± 3.5, p = 0.0006) and non-peripheral (12.44 ± 5.94 vs 7.71 ± 7.1, p = 0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups. Conclusion The phantom study revealed poorer image quality at < 2-cm distance from the detector’s edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2020 ◽  
Author(s):  
Yoko Satoh ◽  
Utaroh Motosugi ◽  
Masamichi Imai ◽  
Yoshie Omiya ◽  
Hiroshi Onishi

Abstract Background: Using phantoms and clinical studies in prone hanging breast imaging, we assessed the image quality of a commercially available dedicated breast PET (dbPET) at the detector's edge, where mammary glands near the chest wall are located. These are compared to supine PET/CT breast images of the same clinical subjects.Methods: A breast phantom with four spheres (16, 10, 7.5, and 5 mm diameter) was filled with 18F-fluorodeoxyglucose solution (sphere-to-background activity concentration ratio, 8:1). The spheres occupied five different positions from the top edge to the centre of the detector and were scanned for 5 min in each position. Reconstructed images were visually evaluated, and the contrast-to-noise ratio (CNR), contrast recovery coefficient (CRC) for the 5-mm sphere, and coefficient of variation of the background (CVB) were calculated. Subsequently, clinical images obtained with standard supine PET/CT and prone dbPET were retrospectively analysed. Tumour-to-background ratios (TBRs) between breast cancer near the chest wall (close to the detector’s edge; peripheral group) and at other locations (non-peripheral group) were compared. The TBR of each lesion was compared between dbPET and PET/CT.Results: Closer to the detector’s edge, the CNR and CRC decreased while the CVB increased in the phantom study for all sphere sizes. The disadvantages of this placement were visually confirmed. Regarding clinical images, TBR of dbPET was significantly higher than that of PET/CT in both the peripheral (12.38±6.41 vs 6.73±3.5, p=0.0006) and non-peripheral (12.44±5.94 vs 7.71±7.1, p=0.0183) groups. There was no significant difference in TBR of dbPET between the peripheral and non-peripheral groups.Conclusion: The phantom study revealed poorer image quality at <2 cm distance from the detector's edge than at other more central parts. In clinical studies, however, the visibility of breast lesions with dbPET was the same regardless of the lesion position, and it was higher than that in PET/CT. dbPET has a great potential for detecting breast lesions near the chest wall if they are at least 2 cm from the edge of the FOV, even in young women with small breasts.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yoko Satoh ◽  
Kenji Hirata ◽  
Daiki Tamada ◽  
Satoshi Funayama ◽  
Hiroshi Onishi

Objective: This retrospective study aimed to compare the ability to classify tumor characteristics of breast cancer (BC) of positron emission tomography (PET)-derived texture features between dedicated breast PET (dbPET) and whole-body PET/computed tomography (CT).Methods: Forty-four BCs scanned by both high-resolution ring-shaped dbPET and whole-body PET/CT were analyzed. The primary BC was extracted with a standardized uptake value (SUV) threshold segmentation method. On both dbPET and PET/CT images, 38 texture features were computed; their ability to classify tumor characteristics such as tumor (T)-category, lymph node (N)-category, molecular subtype, and Ki67 levels was compared. The texture features were evaluated using univariate and multivariate analyses following principal component analysis (PCA). AUC values were used to evaluate the diagnostic power of the computed texture features to classify BC characteristics.Results: Some texture features of dbPET and PET/CT were different between Tis-1 and T2-4 and between Luminal A and other groups, respectively. No association with texture features was found in the N-category or Ki67 level. In contrast, receiver-operating characteristic analysis using texture features' principal components showed that the AUC for classification of any BC characteristics were equally good for both dbPET and whole-body PET/CT.Conclusions: PET-based texture analysis of dbPET and whole-body PET/CT may have equally good classification power for BC.


2005 ◽  
Vol 7 (5) ◽  
pp. 369-376 ◽  
Author(s):  
Barbara J. Fueger ◽  
Wolfgang A. Weber ◽  
Andrew Quon ◽  
Tyler L. Crawford ◽  
M. S. Allen-Auerbach ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1289
Author(s):  
Mio Mori ◽  
Kazunori Kubota ◽  
Tomoyuki Fujioka ◽  
Leona Katsuta ◽  
Yuka Yashima ◽  
...  

We used virtual navigator real-time ultrasound (US) fusion imaging with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to identify a lesion that could not be detected on the US alone in a preoperative breast cancer patient. Of the patient’s two lesions of breast cancer, the calcified lesion could not be identified by US alone. By fusing US with 18F-FDG PET/CT, which had been performed in advance, the location of the lesion could be estimated and marked, which benefited planning an appropriate surgery. The fusion of US and 18F-FDG PET/CT was a simple and noninvasive method for identifying the lesions detected by 18F-FDG PET/CT.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10512-10512 ◽  
Author(s):  
Jesus Garcia-Foncillas ◽  
Purificación Martinez ◽  
Ainhara Lahuerta ◽  
Antonio Llombart Cussac ◽  
Maria Garcia Gonzalez ◽  
...  

10512 Background: To investigate the role of DCE-MRI versus 18F-Misonidazole (FMISO) positron emission tomography (PET/CT) in the prediction of pathological response to bevacizumab-based neodajuvant therapy. Methods: 73 chemotherapy naïve, stage II and III breast cancer (BC) patients (pts) were enrolled in a phase II, single-arm, multicenter, open-label and prospective clinical trial. Pts received single infusion of bevacizumab (15 mg/ kg) (C1) 3 weeks prior to the beginning of neoadjuvant chemotherapy (NAC) consisting of 4 cycles of docetaxel (60 mg/mq), doxorubicin (50 mg/mq) and bevacizumab (15 mg/ kg) every 21 days (C2-C5), followed by surgery. Tumor proliferation, hypoxia and perfusion were evaluated respectively using 18F-Fluorothymidine (FLT) and 18F-Misonidazole (FMISO) positron emission tomography (PET/CT) and dynamic contrast enhancement magnetic resonance (DCE-MR). Serial imaging studies were performed in parallel at several time points including baseline (BL) and 14-21 days after bevacizumab alone (C1). Results: After only one administration of bev, tumor proliferation and perfusion assessed using FLT-PET and DCE-MRI significantly decrease (-26% and -46%, p<0.001) but these changes were not found to be associated with final response. Most important, changes in tumor hypoxia induced by bevacizumab was significantly associated with pathological response (p= 0.004) and was an independent predictor of response in multivariate analysis (RR=0.95, IC 95% 0.92-0.99, p=0.02). Decrease in FMISO uptake >10% yielded a ROC curve area of 0.7 (95% CI: 0.56 - 0.85) with high specificity (94%). Conclusions: Our findings suggest a significant value of early changes in tumor hypoxia assessed by FMISO-PET as a biomarker of pathological response in bevacizumab-based neoadjuvant therapy in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document