recovery coefficient
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 98)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Anja Braune ◽  
Liane Oehme ◽  
Robert Freudenberg ◽  
Frank Hofheinz ◽  
Jörg van den Hoff ◽  
...  

Abstract Background: The PET nuclide and reconstruction method can have a considerable influence on spatial resolution and image quality of PET/CT scans, which can, for example, influence the diagnosis in oncology. The individual impact of the positron energy of 18F, 68Ga and 64Cu on spatial resolution and image quality of PET/CT scans acquired using a clinical, digital scanner was compared. Furthermore, the impact of different reconstruction parameters on image quality and spatial resolution was evaluated for 18F-FDG PET/CT scans acquired with a scanner of the newest generation. Methods: PET/CT scans of a Jaszczak phantom and a NEMA PET body phantom, filled with 18F-FDG, 68Ga-HCl and 64Cu-HCl, respectively, were performed on a Siemens Biograph Vision. Images were assessed using spatial resolution and image quality (Recovery Coefficients (RC), coefficient of variation within the background, Contrast Recovery Coefficient (CRC), Contrast-Noise-Ratio (CNR), and relative count error in lung insert). In a subsequent analysis, the scan of the NEMA PET body phantom filled with 18F-FDG was reconstructed applying different parameters (with/without the application of Point Spread Function (PSF), Time of Flight (ToF) or post-filtering; matrix size). Spatial resolution and quantitative image quality were compared between reconstructions. Results: We found that image quality was comparable between 18F-FDG and 64Cu-HCl PET/CT measurements featuring similar maximal endpoint energy. In comparison, RC, CRC and CNR were worse in 68Ga-HCl data, despite similar count rates. Spatial resolution was up to 18 % worse in 68Ga-HCl compared to 18F-FDG images. Post-filtering of 18F-FDG acquisitions changed image quality the most and reduced spatial resolution by 52 % if a Gaussian filter with 5 mm FWHM was applied. ToF measurements especially improved the recovery of the smallest lesion (RCmean = 1.07 compared to 0.65 without ToF) and improved spatial resolution by 29 %.Conclusions: The positron energy of PET nuclides influences spatial resolution and image quality of digital PET/CT scans. Image quality of 68Ga-HCl PET/CT images was worse compared to 18F-FDG and 64Cu-HCl, respectively, despite similar count rates. Reconstruction parameters have a high impact on image quality and spatial resolution and should be considered when comparing images of different scanners or centers.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Shengwei Zhang ◽  
Jun Fu ◽  
Ruiyu Zhang ◽  
Yan Zhang ◽  
Hongfang Yuan

The mechanical properties of agricultural materials can provide the basis for the design and optimisation of agricultural machinery. There are currently very few studies on the mechanical properties of tiger nut tubers, which is not conducive to the design and development of machinery for their harvesting and processing. To obtain the mechanical parameters of tiger nut tubers, this study investigated the effects of variety (Zhong Yousha 1 and Zhong Yousha 2), moisture content (8%, 16%, 24%, 32% and 40%), contact material (steel, aluminium, plexiglass and polyurethane), release height (170 mm, 220 mm, 270 mm and 320 mm), loading speed (5 mm/min, 10 mm/min, 15 mm/min and 20 mm/min), compression direction (vertical and horizontal) on the friction, collision and compression mechanical properties of the tubers. The results were as follows: Both moisture content and contact material had a significant effect (p < 0.01) on the sliding friction coefficient (0.405–0.652) of the tubers; both variety and moisture content had a significant effect (p < 0.01) on the angle of repose (27.96–36.09°); contact material, moisture content, release height and variety all had a significant effect (p < 0.01) on the collision recovery coefficient (0.376–0.672) of tubers; variety, loading speed, moisture content and compression direction all had significant effects (p < 0.01) on the damage force (87.54–214.48 N), deformation (1.25–6.12 mm) and damage energy (82.38–351.08 mJ) of the tubers; only moisture content and compression direction had significant effects (p < 0.01) on the apparent elastic modulus (12.17–120.88 MPa) of the tubers. The results of this study can provide a reference for the design and optimisation of machinery for the harvesting and processing of tiger nut tubers.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012025
Author(s):  
A S Lobasov ◽  
A V Minakov

Abstract The numerical investigation of the nanofluid flow, which displaced the oil, in a microchannel was carried out. The effect of the average diameter of the SiO2 nanoparticles on the oil displacing efficiency by nanofluids for different sizes of microchannel at various Reynolds numbers was studied. A T-shaped microchannel with a vertical channel, called a pore channel, which imitated the pore in the rock formation was considered as a computational domain. The main flow channel width and height were 200 µm. The width and height of the pore channel were varied in the range from 100 µm to 800 µm. The Reynolds number varied from 0.1 to 100. The oil recovery coefficient, which is defined as the ratio of the displacing volume of oil from the pore to the volume of the pore was considered as the main studied characteristic. The nanofluid is considered a single-phase fluid with experimentally obtained properties. The mass concentration of SiO2 nanoparticles was 0.5%. The average diameters of nanoparticles were 5 nm, 18 nm, and 50 nm. It was found, that the oil recovery coefficient increased with a decrease in the average diameter of nanoparticles. It was obtained that the nanofluid can enhance the oil recovery several times compared to pure water.


2021 ◽  
pp. 183-192
Author(s):  
Gong Xun ◽  
Bai XueWei ◽  
Huang HaiBo ◽  
Zhang FengYu ◽  
Gong YuanJuan ◽  
...  

Taking hybrid biomass sawdust as the material, carry out the simulation calibration experiment with JKR contact model based on DEM principle. The Plackett-Burman factorial experiment is carried out by Design-Expert for 10 related factors. Combined with the steepest climbing test scheme, according to the Box-Behnken experiment, the parameter calibration of the multi-response Indicators is completed. The results are as follows: the Poisson's ratio of hybrid sawdust is 0.30, the density is 399.22kg·m-3, the recovery coefficient between sawdust particles is 0.47, the rolling friction coefficient between sawdust particles is 0.39, and the parameter of surface energy density between sawdust particles (JKR) is 0.29J·m-2. Through the comparative verification experiment, it can be seen that the relative error of the repose angle is 3.41%, and the relative error of the stress-time response curve is less than 6.36%, which verifies the reliability of the calibration method, and provides a theoretical reference for the study of the constitutive characteristics of biomass materials and the densification mechanism.


Author(s):  
E. V. Emelyanenko ◽  
M. N. Piatkevich ◽  
I. G. Tarutin

The description of the original phantom design for assessing the quantitative characteristics of PET images in the study of dynamic objects is given. The phantom movement is controlled by the breath synchronization system, which records the phantom movement amplitude and the duration of the movement cycle. A curve was obtained that simulates human breathing, the parameters of which (amplitude and period) correspond to those obtained in the study of the chest. The values of the ecovery coefficients and contrast are obtained taking into account the sizes of the spheres, as well as the static and dynamic types of movement of phantoms. An assessment of the discrepancy between the recovery coefficients and the contrast values for the spheres installed inside the phantom in the static and dynamic states has been made. With a decrease in the diameter (respectively, and volume) of the sphere, an increase in the difference in values (between the static and dynamic positions of the phantom) of the recovery coefficient is observed. The optimal values of the recovery coefficients obtained using the QClear reconstruction algorithm have been determined. Recommendations for the use of the developed device in the study of dynamic objects are described. It is advisable to use the installation presented in this work to control the quality of the qualitative and quantitative characteristics of diagnostic images obtained both on PET/CT scanners and during studies using SPECT/CT (single-photon emission tomograph combined with a computed tomograph).


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2275
Author(s):  
Ching-Ching Yang

This study aimed to investigate the feasibility of positron range correction based on three different convolutional neural network (CNN) models in preclinical PET imaging of Ga-68. The first model (CNN1) was originally designed for super-resolution recovery, while the second model (CNN2) and the third model (CNN3) were originally designed for pseudo CT synthesis from MRI. A preclinical PET scanner and 30 phantom configurations were modeled in Monte Carlo simulations, where each phantom configuration was simulated twice, once for Ga-68 (CNN input images) and once for back-to-back 511-keV gamma rays (CNN output images) with a 20 min emission scan duration. The Euclidean distance was used as the loss function to minimize the difference between CNN input and output images. According to our results, CNN3 outperformed CNN1 and CNN2 qualitatively and quantitatively. With regard to qualitative observation, it was found that boundaries in Ga-68 images became sharper after correction. As for quantitative analysis, the recovery coefficient (RC) and spill-over ratio (SOR) were increased after correction, while no substantial increase in coefficient of variation of RC (CVRC) or coefficient of variation of SOR (CVSOR) was observed. Overall, CNN3 should be a good candidate architecture for positron range correction in Ga-68 preclinical PET imaging.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012052
Author(s):  
A S Lobasov ◽  
A V Minakov

Abstract The numerical investigation of the two-phase fluid flow in a microchannel was carried out. The effect of the pore width and height on the oil displacing efficiency by nanofluids for various Reynolds numbers was studied. The computational domain was a T-shaped microchannel with a horizontal main flow channel and a vertical channel that imitated the pore in the rock formation, called a pore channel. The main channel width and height were 200 µm, and the pore channel width and height were varied in the range from 100 µm to 800 µm. The Reynolds number was varied from 0.1 to 100. The main studied characteristic was the oil recovery coefficient, defined as the ratio of the volume of oil remaining in the pore to the volume of the pore. That characteristic, obtained for a case, when the nanofluid was used as a displacing agent, was compared to the similar one obtained for a case, when pure water was used as a displacing agent. A single-phase fluid with properties, determined experimentally, was considered the nanofluid. The mass concentrations of SiO2 nanoparticles were 0.25% and 0.5%. The average diameter of nanoparticles was equal to 5 nm. It was found, that the oil recovery coefficient increased with an increase in width of the pore channel and a decrease in its height. It was obtained that the nanofluid can enhance the oil recovery in several times as compared to pure water. It was also found that the main factor affecting the efficiency of oil recovery is the contact angle of wetting.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
M. G. Khalafallah ◽  
H. S. Saleh ◽  
S. M. Ali ◽  
H. M. Abdelkhalek

AbstractThe aerodynamic losses in centrifugal compressors are mainly associated with the separated flow on the suction sides of impeller and diffuser vanes. The overall performance of such compressors can be improved by adding splitter vanes. The present work examines the effect of varying the geometrical location of the splitter vanes in the diffuser on the overall performance of a high-speed centrifugal compressor stage of a small gas turbine. To increase the pressure recovery through the diffuser, two radial sets of vanes are used. The first set of vanes (diffuser-1) is equipped with splitter vanes, placed mid-distance between the main vanes, while the vanes of the second set (diffuser-2) are conventional vanes. Flow through the compressor was simulated using the ANSYS 19 workbench program. Flow characteristics and compressor performance were obtained and analyzed for different circumferential positions of the splitting vanes relative to the main vanes of diffuser-1. The study covered seven positions of the splitter vanes including the original design of the diffuser where the splitter vanes were located at mid-distance between the main vanes. The analysis shows that, at design conditions, selecting the position of the splitter vanes to be nearer to the pressure side of the main vanes improves the stage performance. In the present study, locating the splitters at 33% of the angular distance between the main vanes leads to the best performance, and a significant improvement in the overall stage performance is recorded. The pressure recovery coefficient is raised by about 17%, the pressure ratio is increased by about 1.13%, and the stage efficiency is increased by about 2.01%, compared to the original splitter position. Performance improvement is related to the suppression of the flow separation and the more uniformity of flow. On the contrary, further moving the splitter closer to the main blade, the pressure recovery coefficient is decreased by about 2% than the position of 33% of the angular distance, but still higher than the original position by about 15% and a limited improvement in the compressor performance is noticed. Moving the splitter far out the main blade annihilates the static pressure recovery of the diffuser by about 2:7% compared with the original position. So, for the investigated compressor, the best position of the splitter blade in the circumferential direction, which provides the best stage performance in our parametric analysis, is not necessary to be at the mid-angular distance between the diffuser’s main blades, but it is achieved by moving the splitter to about 33% of the angular distance where the diminished loss from the suppressed flow separation is more prevailing and the instigated friction losses from splitter surfaces are less critical.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 316
Author(s):  
Chao Ning ◽  
Puyu Cao ◽  
Xuran Gong ◽  
Rui Zhu

The bowl diffuser is the main flow component in multistage submersible pumps; however, secondary flow fields can easily induce a separation vortex in the hub corner region of the bowl diffuser during normal operation. To explore the flow mechanism of the hub corner separation vortex and develop a method for suppressing hub corner separation vortices, the lean and sweep of the diffuser blade were optimized using computational fluid dynamics (CFD) simulations and central composite design. Diffuser efficiency, static pressure recovery coefficient, and non-uniformity were selected as the optimization objectives. Details of the internal flow were revealed and the collaborative response relationships between blade lean/sweep parameter equations and optimization objectives were established. The optimization results show that a greater pressure difference between the pressure surface and suction surface (PS–SS) at the inlet can offset transverse secondary flow, whereas a lower PS–SS pressure difference will cause a drop in low-energy fluid in the diffuser mid-section. The blade’s lean scheme suppresses the hub corner separation vortex, leading to an increase in pressure recovery and diffuser efficiency. Moreover, optimizing the sweep scheme can reduce the shroud–hub pressure difference at the inlet to offset spanwise secondary flow and enhance the hub–shroud pressure difference at the outlet, thus driving low-energy fluid further downstream. The sweep scheme suppresses the hub corner vortex, with a resulting drop in non-uniformity of 13.1%. Therefore, optimization of the diffuser blade’s lean and sweep can result in less low-energy fluid or drive it further away from hub, thereby suppressing the hub corner vortex and improving hydraulic performance. The outcomes of this work are relevant to the advanced design of bowl diffusers for multistage submersible pumps.


Sign in / Sign up

Export Citation Format

Share Document