scholarly journals Single-Chip Two Antennas for MM-Wave Self-Powering and Implantable Biomedical Devices

Author(s):  
Dalia Elsheakh ◽  
Somaya I Kayed ◽  
Heba Shawkey

Abstract Implantable biomedical applications arise the need for multi-band sensors with a wideband frequency channel for RF energy harvesting operation. Using a separate antenna for energy harvesting can simplify device circuit complexity and reduces operation frequency bands interference. This paper demonstrates the design of single chip with two separate integrated antennas for implantable biomedical applications. The two antennas have different structures with orthogonal polarization to achieve low mutual coupling and negligible interaction between them. The first antenna is a multi-band meander line (MBML) designed for multiple channels data communication, with quad operating bands in the MM-wave range from 22-64 GHz with area 1150 × 200μm2. The second antenna is a wideband dipole antenna (WBDA) for RF energy harvesting, operates in the frequency range extend from 28 GHz to 36 GHz with area 1300×250μm2. The proposed antennas are designed by using high frequency structure simulator (HFSS) and fabricated by using UMC180nm CMOS technology with total area 0.55 mm2. The MBML frequency bands operating bandwidths can reach 2 GHz at impedance bandwidth ≤ -10 dB. While, the WBDA antenna has gain -2 dB over the operating band extend from 28 GHz up to 36 GHz. The antenna performance is simulated separately and using the human-body phantom model that describes layers of fats inside body, and shows their compatibility for in body operation. Die measurements is performed using on wafer-probing RF PICOBROBES and shows the matching between simulation and measurement values.

2021 ◽  
Vol 36 (7) ◽  
pp. 885-893
Author(s):  
Dalia Elsheakh ◽  
Somaya Kayed ◽  
Heba Shawkey

Implantable biomedical applications arise the need for multi-band sensors with a wideband frequency channel for RF energy harvesting operation. Using a separate antenna for energy harvesting can simplify device circuit complexity and reduces operation frequency bands interference. This paper demonstrates the design of single chip with two separate integrated antennas for implantable biomedical applications. The two antennas have different structures with orthogonal polarization to achieve low mutual coupling and negligible interaction between them. The first antenna is a multi-band meander line (MBML) designed for multiple channels data communication, with quad operating bands in the MM-wave range from 22-64 GHz with area 1150 × 200μm2. The second antenna is a wideband dipole antenna (WBDA) for RF energy harvesting, operates in the frequency range extend from 28 GHz to 36 GHz with area 1300×250μm2. The proposed antennas are designed by using high frequency structure simulator (HFSS) and fabricated by using UMC180nm CMOS technology with total area 0.55 mm2. The MBML frequency bands operating bandwidths can reach 2 GHz at impedance bandwidth ≤ -10 dB. While, the WBDA antenna has gain -2 dB over the operating band extend from 28 GHz up to 36 GHz. The antenna performance is simulated separately and using the human-body phantom model that describes layers of fats inside body, and shows their compatibility for in body operation. Die measurements is performed using on wafer-probing RF PICOBROBES and shows the matching between simulation and measurement values.


2017 ◽  
Vol 10 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Sachin Agrawal ◽  
Manoj Singh Parihar ◽  
Pravin N. Kondekar

This paper presents a broadband hybrid slot-dielectric resonator antenna for radiofrequency (RF) energy-harvesting application. The antenna geometry consists of a simple pentagon-shaped dielectric resonator antenna (PDRA) excited by a microstrip feed underlying rectangular slot with narrow notch. It is investigated that the bandwidth of the proposed PDRA is improved significantly owing to electromagnetic coupling between feeding slot and the dielectric resonator. The measured results demonstrate that the proposed PDRA achieves an impedance bandwidth of 110.8%, covering the frequency range from 0.86 to 3 GHz in addition of stable radiation pattern with peak gain of 6.8 dBi and more than 90% radiation efficiency throughout the band, showing its suitability for RF energy harvesting application. For this to be feasible, the developed antenna is matched with the rectifier at two public telecommunication bands of GSM-900 and GSM-1800 using a compact dual-band hybrid matching network. The measured result demonstrates that the proposed dual-band rectenna system provides the peak efficiency of 63 and 59% for a load impedance of 4.7 kΩ at 0.9 and 1.8 GHz, respectively.


Author(s):  
Manee Sangaran Diagarajan ◽  
Agileswari Ramasamy ◽  
Navaamsini Boopalan ◽  
Norashidah Bt. Md Din

<span>Radio Frequency (RF) harvesting seems to be catching up as an alternate energy source whereby RF energy is scavenged from ambient sources and converted into renewable energy in terms of DC power. This converted DC power is then utilized to power up devices that require a low start up power in which eliminates the need for battery replacement. In this paper, a novel RF energy harvesting prototype is presented which consists of two microstrip patch antennas operating on GSM (900MHz) and WIFI (2.4GHz) &amp; WiMAX (2.3GHz) frequency bands with a bandwidth of 220MHz and 10.11MHz respectively to harvest RF signals from ambience. Two matching networks are presented as well to ensure efficient power transfer to load. Rectifiers are designed to transform the RF signals to DC power. The converted DC signals are then combined and fed to a power management circuit which charges a 4.2V NiMh battery and drives a load at a regulated output of 3V.</span>


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Teasung Kim ◽  
Joohan Park ◽  
Jeehyeong Kim ◽  
Jaewon Noh ◽  
Sunghyun Cho

This paper proposes a MAC protocol for Radio Frequency (RF) energy harvesting in Wireless Sensor Networks (WSN). In the conventional RF energy harvesting methods, an Energy Transmitter (ET) operates in a passive manner. An ET transmits RF energy signals only when a sensor with depleted energy sends a Request-for-Energy (RFE) message. Unlike the conventional methods, an ET in the proposed scheme can actively send RF energy signals without RFE messages. An ET determines the active energy signal transmission according to the consequence of the passive energy harvesting procedures. To transmit RF energy signals without request from sensors, the ET participates in a contention-based channel access procedure. Once the ET successfully acquires the channel, it sends RF energy signals on the acquired channel during Short Charging Time (SCT). The proposed scheme determines the length of SCT to minimize the interruption of data communication. We compare the performance of the proposed protocol with RF-MAC protocol by simulation. The simulation results show that the proposed protocol can increase the energy harvesting rate by 150% with 8% loss of network throughput compared to RF-MAC. In addition, the proposed protocol can increase the lifetime of WSN because of the active energy signal transmission method.


Telecom ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 271-284
Author(s):  
Maria S. Papadopoulou ◽  
Achilles D. Boursianis ◽  
Christos K. Volos ◽  
Ioannis N. Stouboulos ◽  
Spyridon Nikolaidis ◽  
...  

Radio Frequency (RF) energy harvesting has been emerged as a potentially reliable method to replace the costly and difficult to maintain source of low-power wireless sensor networks. A plethora of dual-band rectifier designs has been proposed in the literature operating in various frequency bands. In this paper, a triple-band RF-to-DC rectifier that operates in the frequency bands of LoRaWAN, GSM-900, and WiFi 2.4 GHz is presented. The system is composed of an impedance-matching circuit, an RF-to-DC rectifier, that converts the ambient RF energy into DC voltage able to feed low-power devices, and an output load. The proposed system resonates at three different frequencies of 866 MHz, 948 MHz and 2423 MHz, which fall within the aforementioned frequency bands of interest. The feasible solution of the proposed system was based on a dual-band rectifier operating in the frequency bands of LoRaWAN and GSM-900. A series of shunt stubs was utilized in the initial design to form the feasible solution of the proposed system. The proposed triple-band rectifier was optimized using a powerful optimization algorithm, i.e., the genetic algorithm. The overall system exhibited improved characteristics compared to the initial design in terms of its resonance. Numerical results demonstrated that the overall system exhibited an efficiency of 81% with 3.23 V of the output voltage, for an input power of 0 dBm and a load of 13 kOhm.


Author(s):  
Luis M. Borges ◽  
Norberto Barroca ◽  
Henrique M. Saraiva ◽  
Jorge Tavares ◽  
Paulo T. Gouveia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document