on chip antenna
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 60)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Sanjukta Mandal ◽  
Sujit Kumar Mandal ◽  
Ashis Kumar Mal ◽  
Rajat Mahapatra

Author(s):  
Zhihang Xie ◽  
Zhuohan Sun ◽  
Feng Yan ◽  
Kangkang Sun ◽  
Jingjing Liu ◽  
...  
Keyword(s):  

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Harshavardhan Singh ◽  
Sameen Azhar ◽  
Sanjukta Mandal ◽  
Sujit Kumar Mandal ◽  
Pamidiparthi Ravi Teja Naidu

Abstract In this paper, a circular Sierpinski shaped on-chip fractal antenna with defected ground structure (DGS) is presented for Ku-band applications. The fractal and defected ground structure are employed to achieve higher bandwidth for the entire Ku-band (12–18 GHz). The proposed on-chip antenna (OCA) with a footprint area of 4π mm2 offers wide bandwidth of 7.22 GHz (11.94–19.13 GHz) with the resonating frequency of 15 GHz. At the resonating frequency, the designed antenna shows a peak gain of −19.76 dBi and a radiation efficiency of 55.6%. The co-polarization (CP) and cross-polarization (×P) characteristics of the proposed OCA shows good isolation of 18.05 dBi and 17.44 dBi in the two principal planes with ϕ = 0° and 90° cuts respectively. The measured result of the designed OCA prototype shows a good performance over the desired frequency band.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1264
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Ayman A. Althuwayb ◽  
Dion Mariyanayagam ◽  
Ernesto Limiti

The results presented in this paper show that by employing a combination of metasurface and substrate integrated waveguide (SIW) technologies, we can realize a compact and low-profile antenna that overcomes the drawbacks of narrow-bandwidth and low-radiation properties encountered by terahertz antennas on-chip (AoC). In addition, an effective RF cross-shaped feed structure is used to excite the antenna from its underside by coupling, electromagnetically, RF energy through the multi-layered antenna structure. The feed mechanism facilitates integration with the integrated circuits. The proposed antenna is constructed from five stacked layers, comprising metal–silicon–metal–silicon–metal. The dimensions of the AoC are 1 × 1 × 0.265 mm3. The AoC is shown to have an impedance match, radiation gain and efficiency of ≤ −15 dB, 8.5 dBi and 67.5%, respectively, over a frequency range of 0.20–0.22 THz. The results show that the proposed AoC design is viable for terahertz front-end applications.


2021 ◽  
Vol 35 (11) ◽  
pp. 1380-1381
Author(s):  
Milad Moosavifar ◽  
David Wentzloff

This paper presents high gain and compact Transmit/Receive (TX/RX) integrated antennas in a standard BiCMOS 130nm technology for millimeter-scale millimeter-wave (mm-wave) applications, including high data rate radios and high resolution radars. The proposed TX/RX antenna module utilizes an integrated dipole antenna for the receiver and a slot antenna for the transmitter, placed orthogonally. The achieved gain and radiation efficiency are 5.7dBi and 41.3% for the slot antenna, respectively, and 6dBi and 39% for the dipole antenna. The link budget is improved by 16dB by optimization on the geometry as well as application of a high resistivity hemispheric silicon dielectric lens.


Sign in / Sign up

Export Citation Format

Share Document