scholarly journals Development and Validation of an Rna Binding Protein-associated Prognostic Model for Hepatocellular Carcinoma

2020 ◽  
Author(s):  
Min wang ◽  
Shan Huang ◽  
Zefeng Chen ◽  
Zhiwei Han ◽  
Kezhi Li ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is among the deadliest forms of cancer. While RNA-binding proteins (RBPs) have been shown to be key regulators of oncogenesis and tumor progression, their dysregulation in the context of HCC remains to be fully characterized. Methods: Data from the Cancer Genome Atlas - liver HCC (TCGA-LIHC) database were downloaded and analyzed in order to identify RBPs that were differentially expressed in HCC tumors relative to healthy normal tissues. Functional enrichment analyses of these RBPs were then conducted using the GO and KEGG databases to understand their mechanistic roles. Central hub RBPs associated with HCC patient prognosis were then detected through Cox regression analyses, and were incorporated into a prognostic model. The prognostic value of this model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, univariate and multivariate Cox regression analyses, and nomograms. Lastly, the relationship between individual hub RBPs and HCC patient overall survival (OS) was evaluated using Kaplan-Meier curves. Results: In total, we identified 81 RBPs that were differentially expressed in HCC tumors relative to healthy tissues (54 upregulated, 27 downregulated). Seven prognostically-relevant hub RBPs (SMG5, BOP1, LIN28B, RNF17, ANG, LARP1B, and NR0B1) were then used to generate a prognostic model, after which HCC patients were separated into high- and low-risk groups based upon resultant risk score values. In both the training and test datasets, we found that high-risk HCC patients exhibited decreased OS relative to low-risk patients, with time-dependent area under the ROC curve values of 0.801 and 0.676, respectively. This model thus exhibited good prognostic performance. We additionally generated a prognostic nomogram based upon these seven hub RBPs and found that four other genes were significantly correlated with OS. Conclusion: We herein identified a seven RBP signature that can reliably be used to predict HCC patient OS, underscoring the prognostic relevance of these genes.

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Min Wang ◽  
Shan Huang ◽  
Zefeng Chen ◽  
Zhiwei Han ◽  
Kezhi Li ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is among the deadliest forms of cancer. While RNA-binding proteins (RBPs) have been shown to be key regulators of oncogenesis and tumor progression, their dysregulation in the context of HCC remains to be fully characterized. Methods Data from the Cancer Genome Atlas - liver HCC (TCGA-LIHC) database were downloaded and analyzed in order to identify RBPs that were differentially expressed in HCC tumors relative to healthy normal tissues. Functional enrichment analyses of these RBPs were then conducted using the GO and KEGG databases to understand their mechanistic roles. Central hub RBPs associated with HCC patient prognosis were then detected through Cox regression analyses, and were incorporated into a prognostic model. The prognostic value of this model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, univariate and multivariate Cox regression analyses, and nomograms. Lastly, the relationship between individual hub RBPs and HCC patient overall survival (OS) was evaluated using Kaplan-Meier curves. Finally, find protein-coding genes (PCGs) related to hub RBPs were used to construct a hub RBP-PCG co-expression network. Results In total, we identified 81 RBPs that were differentially expressed in HCC tumors relative to healthy tissues (54 upregulated, 27 downregulated). Seven prognostically-relevant hub RBPs (SMG5, BOP1, LIN28B, RNF17, ANG, LARP1B, and NR0B1) were then used to generate a prognostic model, after which HCC patients were separated into high- and low-risk groups based upon resultant risk score values. In both the training and test datasets, we found that high-risk HCC patients exhibited decreased OS relative to low-risk patients, with time-dependent area under the ROC curve values of 0.801 and 0.676, respectively. This model thus exhibited good prognostic performance. We additionally generated a prognostic nomogram based upon these seven hub RBPs and found that four other genes were significantly correlated with OS. Conclusion We herein identified a seven RBP signature that can reliably be used to predict HCC patient OS, underscoring the prognostic relevance of these genes.


2020 ◽  
Author(s):  
Min wang ◽  
Shan Huang ◽  
Zefeng Chen ◽  
Zhiwei Han ◽  
Kezhi Li ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is among the deadliest forms of cancer. While RNA-binding proteins (RBPs) have been shown to be key regulators of oncogenesis and tumor progression, their dysregulation in the context of HCC remains to be fully characterized. Methods: Data from the Cancer Genome Atlas - liver HCC (TCGA-LIHC) database were downloaded and analyzed in order to identify RBPs that were differentially expressed in HCC tumors relative to healthy normal tissues. Functional enrichment analyses of these RBPs were then conducted using the GO and KEGG databases to understand their mechanistic roles. Central hub RBPs associated with HCC patient prognosis were then detected through Cox regression analyses, and were incorporated into a prognostic model. The prognostic value of this model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, univariate and multivariate Cox regression analyses, and nomograms. Lastly, the relationship between individual hub RBPs and HCC patient overall survival (OS) was evaluated using Kaplan-Meier curves. Finally, find protein-coding genes (PCGs) related to hub RBPs were used to construct a hub RBP-PCG co-expression network.Results: In total, we identified 81 RBPs that were differentially expressed in HCC tumors relative to healthy tissues (54 upregulated, 27 downregulated). Seven prognostically-relevant hub RBPs (SMG5, BOP1, LIN28B, RNF17, ANG, LARP1B, and NR0B1) were then used to generate a prognostic model, after which HCC patients were separated into high- and low-risk groups based upon resultant risk score values. In both the training and test datasets, we found that high-risk HCC patients exhibited decreased OS relative to low-risk patients, with time-dependent area under the ROC curve values of 0.801 and 0.676, respectively. This model thus exhibited good prognostic performance. We additionally generated a prognostic nomogram based upon these seven hub RBPs and found that four other genes were significantly correlated with OS.Conclusion: We herein identified a seven RBP signature that can reliably be used to predict HCC patient OS, underscoring the prognostic relevance of these genes.


2020 ◽  
Author(s):  
Min wang ◽  
Shan Huang ◽  
Zefeng Chen ◽  
Zhiwei Han ◽  
Kezhi Li ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is among the deadliest forms of cancer. While RNA-binding proteins (RBPs) have been shown to be key regulators of oncogenesis and tumor progression, their dysregulation in the context of HCC remains to be fully characterized.Methods: Data from the Cancer Genome Atlas - liver HCC (TCGA-LIHC) database were downloaded and analyzed in order to identify RBPs that were differentially expressed in HCC tumors relative to healthy normal tissues. Functional enrichment analyses of these RBPs were then conducted using the GO and KEGG databases to understand their mechanistic roles. Central hub RBPs associated with HCC patient prognosis were then detected through Cox regression analyses, and were incorporated into a prognostic model. The prognostic value of this model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, univariate and multivariate Cox regression analyses, and nomograms. Lastly, the relationship between individual hub RBPs and HCC patient overall survival (OS) was evaluated using Kaplan-Meier curves. Finally, find protein-coding genes (PCGs) related to hub RBPs were used to construct a hub RBP-PCG co-expression network.Results: In total, we identified 81 RBPs that were differentially expressed in HCC tumors relative to healthy tissues (54 upregulated, 27 downregulated). Seven prognostically-relevant hub RBPs (SMG5, BOP1, LIN28B, RNF17, ANG, LARP1B, and NR0B1) were then used to generate a prognostic model, after which HCC patients were separated into high- and low-risk groups based upon resultant risk score values. In both the training and test datasets, we found that high-risk HCC patients exhibited decreased OS relative to low-risk patients, with time-dependent area under the ROC curve values of 0.801 and 0.676, respectively. This model thus exhibited good prognostic performance. We additionally generated a prognostic nomogram based upon these seven hub RBPs and found that four other genes were significantly correlated with OS.Conclusion: We herein identified a seven RBP signature that can reliably be used to predict HCC patient OS, underscoring the prognostic relevance of these genes.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fengxia Chen ◽  
Qingqing Wang ◽  
Yunfeng Zhou

Abstract Background RNA-binding proteins (RBPs) play crucial and multifaceted roles in post-transcriptional regulation. While RBPs dysregulation is involved in tumorigenesis and progression, little is known about the role of RBPs in bladder cancer (BLCA) prognosis. This study aimed to establish a prognostic model based on the prognosis-related RBPs to predict the survival of BLCA patients. Methods We downloaded BLCA RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified RBPs differentially expressed between tumour and normal tissues. Then, functional enrichment analysis of these differentially expressed RBPs was conducted. Independent prognosis-associated RBPs were identified by univariable and multivariable Cox regression analyses to construct a risk score model. Subsequently, Kaplan–Meier and receiver operating characteristic curves were plotted to assess the performance of this prognostic model. Finally, a nomogram was established followed by the validation of its prognostic value and expression of the hub RBPs. Results The 385 differentially expressed RBPs were identified included 218 and 167 upregulated and downregulated RBPs, respectively. The eight independent prognosis-associated RBPs (EFTUD2, GEMIN7, OAS1, APOBEC3H, TRIM71, DARS2, YTHDC1, and RBMS3) were then used to construct a prognostic prediction model. An in-depth analysis showed lower overall survival (OS) in patients in the high-risk subgroup compared to that in patients in the low-risk subgroup according to the prognostic model. The area under the curve of the time-dependent receiver operator characteristic (ROC) curve were 0.795 and 0.669 for the TCGA training and test datasets, respectively, showing a moderate predictive discrimination of the prognostic model. A nomogram was established, which showed a favourable predictive value for the prognosis of BLCA. Conclusions We developed and validated the performance of a prognostic model for BLCA that might facilitate the development of new biomarkers for the prognostic assessment of BLCA patients.


2020 ◽  
Author(s):  
Yingjuan Lu ◽  
Yongcong Yan ◽  
Mo Liu ◽  
Yancan Liang ◽  
Yushan Ye ◽  
...  

Abstract Background: The biological roles and clinical significance of RNA-binding proteins (RBPs) in oral squamous cell carcinoma (OSCC) are not fully understood. We investigated the prognostic value of RBPs in OSCC by several bioinformatic strategies.Methods: OSCC data were obtained from a public online database, the Limma R package was used to identify differentially expressed RBPs, and functional enrichment analysis was performed to elucidate the biological functions of the above RBPs in OSCC. We performed protein-protein interaction (PPI) network and Cox regression analyses to extract prognosis-related hub RBPs. Next, we established and validated a prognostic model based on the hub RBPs by Cox regression and risk score analyses.Results: We found that the differentially expressed RBPs were closely related to the defence response to virus and multiple RNA processes. We obtained ten prognosis-related hub RBPs (ZC3H12D, OAS2, INTS10, ACO1, PCBP4, RNASE3, PTGES3L-AARSD1, RNASE13, DDX4, and PCF11) and effectively predicted the overall survival of OSCC patients. The area under the ROC curve (AUC) of the risk score model was 0.781, suggesting that our model had good prognostic performance. Finally, we built a nomogram integrating the ten RBPs. The internal validation cohort results showed a reliable predictive capability of the nomogram for OSCC.Conclusions: We established a novel ten-RBP-based model for OSCC that could enable precise therapeutic targets in the future.


2020 ◽  
Author(s):  
TONG WU ◽  
Zhiyun Yang ◽  
Yuying Yang ◽  
Yuyong Jiang ◽  
Peipei Meng ◽  
...  

Abstract Background: RNA-binding proteins (RBPs) are abnormally expressed in a variety of malignant tumors and are closely related to tumorigenesis, tumor progression, and prognosis. The role of RBPs in hepatocellular carcinoma (HCC) is unclear. Based on the cancer genome atlas (TCGA) database, we conducted a systematic bioinformatics analysis of abnormally expressed RBPs in HCC, with the aim of identifying the prognostic markers and potential therapeutic targets.Methods: HCC RNA sequencing data downloaded from TCGA database were used to determine the differentially expressed RBPs in livery cancer and normal tissues, followed by performing functional enrichment analysis and visualization of interaction relationships. Univariate and multivariate Cox regression analyses were subsequently used to identify RBPs that were significantly related to the prognosis to construct a prognostic model. The predictive performance of the prognostic model was evaluated by survival analysis and receiver operating characteristic (ROC) curve analysis and verified in the test cohort. Human protein atlas online database was used to verify the expression level of RBPs in the prognostic model.Results: In total, 82 differentially expressed RBPs were identified, including 55 upregulated and 27 downregulated RBPs. Further functional enrichment and interaction analyses showed that the differentially expressed RBPs were mainly related to regulating of mRNA metabolic process, RNA catabolic, mRNA catabolic process, and macromolecule methylation. Five RBP genes, LIN28B, SMG5, PPARGC1A, LARP1B, and ANG were identified as prognostic-related genes and used to construct the prognostic model. The predictive ability of the prognostic model was verified in the test cohort. ROC curve analysis showed that the prognostic model had good sensitivity and specificity. Independent prognostic analysis showed that the risk score may be an independent prognostic factor for HCC.Conclusion: This study constructed a reliable prognostic prediction model by analyzing the differentially expressed RBPs of HCC, facilitating the identification of HCC prognostic biomarkers and therapeutic targets.


2021 ◽  
Author(s):  
Yukun Jia ◽  
Zhan Peng ◽  
Guangye Wang

Abstract Background: RNA binding proteins (RBP) plays an important role in post-transcriptional regulation. Although the dysregulation of RBP expression is closely related to the occurrence and metastasis of a variety of tumors, there are few reports on RBP in endometrial carcinoma (UCEC). This study aims to establish a RBP-related prognostic model of UCEC. Methods: We downloaded UCEC gene expression and clinical information data from the Cancer Genome Atlas (TCGA) and GEO database, and determined RBPs that are differentially expressed between tumors and normal tissues. Then, used functional enrichment analysis to analyze the biological functions of the differentially expressed RBP. Used univariate Cox regression analysis to screen prognostic-related RBP and construct a prognostic model. Subsequently, Kaplan-Meier and recipient operating characteristic (ROC) curves were drawn to evaluate the model. Finally, established a nomogram. Results: This study identified 531 differentially expressed RBPs, including 325 up-regulated and 206 down-regulated RBPs, respectively. Then six independent prognostic-related RBPs (REXO2, MARS2, XPO5, YBX1, YBX2, and CELF4) were used to construct a prognostic model. According to this model, the overall survival (OS) of patients in the high-risk score group was significantly lower than that of the low-risk score group. In the training queue and the test queue, the areas under the ROC curve were 0.799 and 0.669, respectively, showing the moderate predictive value of the model. Conclusion: We have developed and validated the RBP-related prognostic model.


2020 ◽  
Author(s):  
Xinhong Liu ◽  
Fang Tan ◽  
Xingyao Long ◽  
Ruokun Yi ◽  
Dingyi Yang ◽  
...  

Abstract Background RNA binding proteins (RBPs) play an important role in a variety of cancers. However, the role of RBPs in colorectal adenocarcinoma (COAD) has not been studied. Integrated analysis of RBPs will provide a better understanding of disease genesis and new insights into COAD treatment. Methods The gene expression data and corresponding clinical information for COAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was used to screen for RBPs associated with COAD recurrence, and multivariate Cox proportional hazards regression analyses were used to identify genes that were associated with COAD recurrence. A nomogram was constructed to predict the recurrence of COAD, and a receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of the prediction models. The Human Protein Atlas database was used in prediction models to confirm the expression of key genes in COAD patients. Result A total of 177 differentially expressed RBPs was obtained, comprising 123 upregulated and 54 downregulated. GO and KEGG enrichment analysis showed that the differentially expressed RBPs were mainly related to mRNA metabolism, RNA processing and translation regulation. Seven RBP genes (TDRD6, POP1, TDRD7, PPARGC1A, LIN28B, LRRFIP2 and PNLDC1) were identified as prognosis-associated genes and were used to construct the prognostic model. Conclusion We constructed a COAD prognostic model through bioinformatics analysis, which indicated that prognostic model RBPs have a potential role in the diagnosis and prognosis of COAD. Moreover, the nomogram can effectively predict the 1-year, 3-year, and 5-year survival rate for COAD patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260876
Author(s):  
Jun Yang ◽  
Jiaying Zhou ◽  
Cuili Li ◽  
Shaohua Wang

Background Neuroblastoma (NB) is the most common solid tumor in children. NB treatment has made significant progress; however, given the high degree of heterogeneity, basic research findings and their clinical application to NB still face challenges. Herein, we identify novel prognostic models for NB. Methods We obtained RNA expression data of NB and normal nervous tissue from TARGET and GTEx databases and determined the differential expression patterns of RNA binding protein (RBP) genes between normal and cancerous tissues. Lasso regression and Cox regression analyses identified the five most important differentially expressed genes and were used to construct a new prognostic model. The function and prognostic value of these RBPs were systematically studied and the predictive accuracy verified in an independent dataset. Results In total, 348 differentially expressed RBPs were identified. Of these, 166 were up-regulated and 182 down-regulated RBPs. Two hubs RBPs (CPEB3 and CTU1) were identified as prognostic-related genes and were chosen to build the prognostic risk score models. Multivariate Cox analysis was performed on genes from univariate Cox regression and Lasso regression analysis using proportional hazards regression model. A five gene prognostic model: Risk score = (-0.60901*expCPEB3)+(0.851637*expCTU1) was built. Based on this model, the overall survival of patients in the high-risk subgroup was lower (P = 2.152e-04). The area under the curve (AUC) of the receiver-operator characteristic curve of the prognostic model was 0.720 in the TARGET cohort. There were significant differences in the survival rate of patients in the high and low-risk subgroups in the validation data set GSE85047 (P = 0.1237e-08), with the AUC 0.730. The risk model was also regarded as an independent predictor of prognosis (HR = 1.535, 95% CI = 1.368–1.722, P = 2.69E-13). Conclusions This study identified a potential risk model for prognosis in NB using Cox regression analysis. RNA binding proteins (CPEB3 and CTU1) can be used as molecular markers of NB.


2020 ◽  
Author(s):  
Zaoqu Liu ◽  
Dechao Jiao ◽  
Xueliang Zhou ◽  
Yuan Yao ◽  
Zhaonan Li ◽  
...  

Abstract Background: A growing amount of evidence has suggested immune-related genes (IRGs) play a key role in the development of hepatocellular carcinoma (HCC). However, there have been no investigations proposing a reliable prognostic signature in terms of tumor immunology. This study aimed to develop a robust signature based on IRGs in HCC.Methods: A total of 597 HCC patients were enrolled. The TCGA database was utilized for discovery, and the ICGC database was utilized for validation. Multiple algorithms (including univariate Cox, LASSO, and multivariate Cox regression) were performed to identify key prognostic IRGs and establish an immune-related risk signature. Bioinformatics analysis and R soft tools were utilized to annotate underlying biological functions. Results: A total of 1416 differentially expressed mRNAs (DEMs) were screened in the TCGA cohort, of which 90 were differentially expressed IRGs (DEIRGs). Using univariate Cox regression analysis, we identified 33 prognostically relevant DEIRGs. Using LASSO regression and multivariate Cox regression analysis, we extracted 8 optimal DEIRGs (APLN, CDK4, CXCL2, ESR1, IL1RN, PSMD2, SEMA3F, and SPP1) to construct a risk signature with the ability to distinguish cases as having a high or low risk of unfavorable prognosis in the TCGA cohort, and the signature was verified in the ICGC cohort. The signature was prognostically significant in all stratified cohorts and was deemed an independent prognostic factor for HCC. We also built a nomogram with good performance by combining the signature with clinicopathological factors to increase the accuracy of predicting HCC prognosis. By investigating the relationship of the risk score and 8 risk genes from our signature with clinical traits, we found that the aberrant expression of the immune-related risk genes is correlated with the development of HCC. Moreover, the high-risk group was higher than the low-risk group in terms of tumor mutation burden (TMB), immune cell infiltration, and the expression of immune checkpoints (PD-1, PD-L1, and CTLA-4), and functional enrichment analysis indicated the signature enriched an intensive immune phenotype.Conclusions: This study developed a robust immune-related risk signature and built a predictive nomogram that reliably predict overall survival in HCC, which may be helpful for clinical management and personalized immunotherapy decisions.


Sign in / Sign up

Export Citation Format

Share Document