scholarly journals Slope Stability Analysis Under Pore-Water Pressure: A Case Study in Zarm-Rood Earthfill Dam, Iran

Author(s):  
Mojtaba Gholamzade ◽  
Ahad Bagherzadeh Khalkhali

Abstract It is well known that construction of dams or reservoirs have geomorphological impacts on the environment and could potentially accelerate the occurrence of landslides. One of the most common impact is the occurrence of new landslides and activation of the old one, which may turn into a natural disaster. Thus, controlling the stability of landslides become challenging issue specifically in the presence of f pore-water pressure. In general, the presence of water or pore-water pressure reduces the soil resistance and also leads to increase in stimulus loads, resulting in reduction of stability coefficients. In the present study, using GeoStudio SLOPE/W software, the effect of the proximity of the dam reservoir in terms of different operating conditions on the stability analysis of the landslide area of ​​Zarm-Rood Dam is investigated. In the first step, the evaluation of internal stability of landslides and the effect of the presence of water on stability coefficients were evaluated and then the sustainable design of landslides was proposed. It was found that when extra pore-water pressure ranges from 0.2 to 0.4, safety factor is decreased by about 10%. Accordingly, safety factor is decreased by about 17% when extra pore-water pressure range from 0.4 to 0.6. This research demonstrates successful implementation of GeoStudio SLOPE/W for slope stability analysis in dam construction projects.

2015 ◽  
Vol 3 (6) ◽  
pp. 4159-4187
Author(s):  
M. C. Park

Abstract. In this study, we performed a model slope experiment with rainfall seepage, and the results were compared and verified with the unsaturated slope stability analysis method. In the model slope experiment, we measured the changes in water content and matric suction due to rainfall seepage, and determined the time at which the slope failure occurred and the shape of the failure. In addition, we compared and verified the changes in the factor of safety and the shape of the failure surface, which was calculated from the unsaturated slope stability analysis with the model experiment. From the results of experiment and analysis, it is concluded that the unsaturated slope stability analysis can be used to accurately analyze and predict rainfall-induced slope failure. It is also concluded that in seepage analysis, setting the initial conditions and boundary conditions is very important. If engineers will use the measured pore water pressure or matric suction, the accuracy of analysis can be enhanced. The real-time monitoring system of pore water pressure or matric suction can be used as a warning of rainfall-induced slope failure.


Author(s):  
Justine Mollaert ◽  
Abbass Tavallali

An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of the breakwater. To include the wave actions in the slope stability analysis a simplified method is used. For the slope stability analysis, a specific piezometric line is determined. This piezometric line consists of a wave profile and the profile of wave run-up. The slope stability analysis are performed with GEO-SLOPE/W 2007. For the geotechnical design of the breakwater load cases of extreme and normal waves combined with, respectively, extreme and normal water levels are analysed. All the load cases which included the wave actions result in lower stability safety factors than the load cases with only still water levels. Therefore the wave actions are the determining load case for the geotechnical stability of the breakwater and it should be studied in detail.


2011 ◽  
Vol 42 ◽  
pp. 137-152
Author(s):  
Ranjan Kumar Dahal ◽  
Shuichi Hasegawa ◽  
Minoru Yamanaka ◽  
Netra Prakash Bhandary

Rainfall triggered landslides are frequent problems in the residual soil of andesitic terrain in western Japan. Characteristics of residual soils over bronzite andesite, procedure of in situ permeability measurement, matric suction and soil moisture content change and stability analyses considering unsaturated-saturated soils as integral system are presented in this paper. The paper highlights two landslides of small andesitic hillock of western Japan and describes modelling of rainwater seepage, slope stability analysis and contributing parameters for landsliding in andesitic terrain. For both landslides, results of geomorphological and geotechnical analyses were used as a direct input to the numerical modelling. For transient conditions, a finite element analysis was used to model the fluctuations in pore water pressure during the rainfall, with the computed hourly rainfall rate as the surface boundary condition. This was then followed by the slope stability analysis using the temporal pore water pressure distributions derived from the seepage analysis. Obtained trend for the factor of safety indicates that the most critical time step for failure was a few hours following the antecedent moisture content of previously day peak rainfall. Time of failure estimated by modelling has shown good match with time declared by eyewitnesses.


1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


2021 ◽  
Vol 248 ◽  
pp. 03024
Author(s):  
Yuan Zhang ◽  
Haifeng Lu

Taking a homogeneous double-layer soil slope as an example, the SEEP/W module and SLOPE/W module in the finite element analysis software GeoStudio were used in this paper. Then, the changes of pore water pressure and stability under different rainfall patterns and soil parameters were studied. Finally, the variation curves of pore water pressure and slope safety factor with rainfall time were obtained. The results show that: Soil parameters a and m are directly proportional to the slope safety factor, while n is inversely proportional to the slope safety factor. Under the condition of continuous rainfall, the decreasing rate of slope safety factor is directly proportional to the rainfall intensity.Under different rainfall patterns, the continuous rainfall in the advanced and normal rainfall patterns will cause the slope stability to decline and then gradually recover, while delayed and averaged rainfall patterns rainfall will cause the slope stability to decline continuously.In addition, there is a lag period in the change of slope safety factor, and the whole lag period lasts about 6 hours. During the lag period, the pore water pressure inside the soil began to decrease, while the slope safety factor continued to decrease. The safety factor starts to recover after the lag period ends.


2014 ◽  
Vol 602-605 ◽  
pp. 598-601 ◽  
Author(s):  
Tie Jun Tao ◽  
En An Chi ◽  
Ming Sheng Zhao ◽  
Qiang Kang

Based on the finite element model of slope, the stability of sand slope are studied. The results show that The pore water pressure shows increase trend, while the excess pore water pressure shows decreasing trend with the increase of the water depth. With the increase of the the water depth, safety factor of slope calculated by quasi static reduces to 0.193 from 2.366, which reduces 12.26times. The minimum safety factor calculated by dynamic time history is less than that by quasi static method, which shows that there is some limitations of the quasi static method.Without considering the groundwater, the destruction of slope is mainly the circular shearing damage through the slope toe, while the destruction is not yet through the slope toe, but from a point on the front of slope.


2012 ◽  
Vol 204-208 ◽  
pp. 312-315
Author(s):  
Zeng Rong Liu ◽  
Shao Feng Luo

Aiming at researching on stability of high filling slope effected by precipitation duration. Transient saturated-unsaturated seepage method and slope stability finite element method is combined in this paper. Vadose field of slope is simulated in different precipitation duration condition. On the basis of vadose field author analyses the stability of slope effected by precipitation duration. The research results indicate that change of the pore water pressure is mainly concentrated in the position where the water level changes in the process of precipitation. After the precipitation pore water pressure gradually dissipates. Precipitation duration has great effect on the slope stability. With the precipitation duration increases the slope safety coefficient decreases. The slope safety coefficient decreases in the process of precipitation, but after precipitation, it increases gradually and eventually be more stable. The longer the precipitation duration is, the longer time that the safety coefficient reaches the ultimate stability required.


2020 ◽  
Vol 1450 ◽  
pp. 012014
Author(s):  
I W Arya ◽  
I W Wiraga ◽  
I G A G S Dwipa ◽  
I M W Pramana

Sign in / Sign up

Export Citation Format

Share Document