scholarly journals Real-time holographic lensless micro-endoscopy through flexible fibers via Fiber Bundle Distal Holography (FiDHo)

Author(s):  
Noam Badt ◽  
Ori Katz

Abstract Fiber-based micro-endoscopes are a critically important tool for minimally-invasive deep-tissue imaging. However, the state-of-the-art micro-endoscopes cannot perform three-dimensional imaging through dynamically-bent fibers without the use of bulky optical elements such as lenses and scanners at the distal end, increasing the footprint and tissue-damage. Great efforts have been invested in developing approaches that avoid distal bulky optical elements. However, the fundamental barrier of dynamic optical wavefront-distortions in propagation through flexible fibers, limits current approaches to nearly-static or non-flexible fibers. Here, we present an approach that allows holographic 3D bend-insensitive, coherence-gated, micro-endoscopic imaging, using commercially available multi-core fibers (MCFs). We achieve this by adding a miniature partially-reflecting mirror to the distal fiber-tip, allowing to perform low-coherence full-field phase-shifting holography. We demonstrate widefield diffraction-limited reflection imaging of amplitude and phase targets through dynamically bent fibers at video-rates. Our approach holds potential for label-free investigations of dynamic samples

2020 ◽  
Vol 11 (9) ◽  
pp. 4976
Author(s):  
Kwanjun Park ◽  
June Hoan Kim ◽  
Taedong Kong ◽  
Woong Sun ◽  
Jonghwan Lee ◽  
...  

2012 ◽  
Vol 20 (4) ◽  
pp. 12-16
Author(s):  
Tilman Franke ◽  
Sebastian Rhode

Two-photon microscopy (2PM) provides three-dimensional (3D) and four-dimensional (4D) (x, y, z, t) imaging in living specimens or under experimental physiological conditions very close to live. In conjunction with fluorescent labels, 2PM provides a powerful means of investigating the relationships between structure and function at the microscopic level that are key to understanding biological systems. This technique is able to provide time-resolved, 3D images of dynamic systems with near-diffraction-limited resolution and highly specific structural contrast.


2021 ◽  
Vol 173 ◽  
pp. 141-163
Author(s):  
Fei Ding ◽  
Jing Feng ◽  
Xueli Zhang ◽  
Jielin Sun ◽  
Chunhai Fan ◽  
...  

2012 ◽  
Vol 100 (13) ◽  
pp. 131102 ◽  
Author(s):  
Huiliang Zhang ◽  
Mahmood Sabooni ◽  
Lars Rippe ◽  
Chulhong Kim ◽  
Stefan Kröll ◽  
...  

2011 ◽  
Vol 300 (2) ◽  
pp. F291-F300 ◽  
Author(s):  
R. Lance Miller

Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interactions using multiple fluorescent proteins in the same mouse, and the cell cycle in real time and in the whole animal, and they can be used to perform deep tissue imaging in the whole animal, follow cell lineage during development and disease, and isolate large quantities of a pure cell type directly from organs. These novel transgenic mice and their applications provide the means for studying of molecular and biochemical events in the whole animal that was previously limited to cell cultures. In conclusion, transgenic mice are not just for generating knockouts.


2016 ◽  
Vol 22 (31) ◽  
pp. 10801-10807 ◽  
Author(s):  
Liangliang Liang ◽  
Xiaoji Xie ◽  
Daniel Teh Boon Loong ◽  
Angelo Homayoun All ◽  
Ling Huang ◽  
...  

2018 ◽  
Vol 9 (10) ◽  
pp. 5011 ◽  
Author(s):  
Jiafu Wang ◽  
Hua Li ◽  
Geng Tian ◽  
Yong Deng ◽  
Qian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document