scholarly journals Crowdsourced Manufacturing Cyber Platform and Intelligent Cognitive Assistants for Delivery of Manufacturing as a Service: Review of Fundamental Issues and Outlook

Author(s):  
Xuejian Gong ◽  
Jianxin Roger Jiao ◽  
Amit Jariwala ◽  
Beshoy Morkos

Abstract Future cyber manufacturing is envisioned to be fulfilled in a crowdsourcing environment that will engage a large population of manufacturer crowds to collaborate with the cyber platform on a shared understanding of the tasks for delivering manufacturing as a service (MaaS). This review paper is motivated towards a symbiosis of crowdsourcing cyber platform technologies to enhance intelligent decision support to manufacturing planning for achieving MaaS operational goals. The paper reviews the fundamental issues of MaaS through crowdsourcing from a model-based systems engineering perspective that is in line with a systematic framework of platform-driven MaaS. Also discussed is the outlook of analytic and model-based approach for crowdsourced manufacturing in order to enable new cyber manufacturing capabilities that represent a significant transformation of the manufacturing sector. The vision is to facilitate transition from the current practice of focusing on automation and manufacturing informatics within individual enterprise to open manufacturing crowds throughout the cloud platform to fulfill MaaS. The cyber platform and intelligent cognitive assistants enhance MaaS fulfilment by adopting computational modeling and decision analytics to exploit the implicit design and manufacturing knowledge that is incorporated in the library of previously executed manufacturing tasks, which in turn facilitates generation of manufacturing process plans by parametric adjustment of process plans for similar tasks.

Konstruktion ◽  
2020 ◽  
Vol 72 (11-12) ◽  
pp. 76-83
Author(s):  
Jens Pottebaum ◽  
Iris Gräßler

Inhalt Unscharfe Anforderungen, verschiedene Lösungs-alternativen oder eingeschränkt gültige Simulationsmodelle sind Beispiele für inhärente Unsicherheit in der Produktentwicklung. Im vorliegenden Beitrag wird ein modellbasierter Ansatz vorgestellt, der das industriell etablierte Denken in Sicherheitsfaktoren um qualitative Aspekte ergänzt. Modelle der Informationsqualität helfen, die Unsicherheit von Ent- wicklungsartefakten beschreibend zu charakterisieren. Mittels semantischer Technologien wird Unsicherheit so wirklich handhabbar – nicht im Sinne einer Berechnung, sondern im Sinne einer qualitativen Interpretation. Dadurch entsteht wertvolles Wissen für die iterative Anforderungsanalyse, die Bewertung alternativer System-Architekturen oder für die Rekonfiguration von Simulationen.


2021 ◽  
Vol 12 (3) ◽  
pp. 97
Author(s):  
Christian Raulf ◽  
Moritz Proff ◽  
Tobias Huth ◽  
Thomas Vietor

Today, vehicle development is already in a process of substantial transformation. Mobility trends can be derived from global megatrends and have a significant influence on the requirements of the developed vehicles. The sociological, technological, economic, ecological, and political developments can be determined by using the scenario technique. The results are recorded in the form of differently shaped scenarios; however, they are mainly document-based. In order to ensure a holistic approach in the sense of model-based systems engineering and to be able to trace the interrelationships of the fast-changing trends and requirements, it is necessary to implement future scenarios in the system model. For this purpose, a method is proposed that enables the consideration of future scenarios in model-based vehicle development. The procedure of the method is presented, and the location of the future scenarios within the system architectures is named. The method is applied and the resulting system views are derived based on the application example of an autonomous people mover. With the help of the described method, it is possible to show the effects of a change of scenario (e.g., best-case and worst-case) and the connections with the highest level of requirements: stakeholder needs.


ATZ worldwide ◽  
2021 ◽  
Vol 123 (7-8) ◽  
pp. 66-71
Author(s):  
Thorsten Weyer ◽  
Marcel Goger ◽  
Walter Koch ◽  
Birgit Kremer

2021 ◽  
Vol 1 ◽  
pp. 3369-3378
Author(s):  
Stephan Husung ◽  
Christian Weber ◽  
Atif Mahboob ◽  
Sven Kleiner

AbstractModel-Based Systems Engineering (MBSE) is an efficient approach to support product development in order to meet today's challenges. The MBSE approach includes methods and, above all, modelling approaches of the technical system with the aim of continuous use in development. The objective of this paper is to use the potential of the MBSE models and to show the added value of such models on the system level when used as a single source. With this objective, this paper presents a three-step approach to systematically identify and apply meaningful modelling approaches within MBSE, based on the needs during the development process. Furthermore, an FMEA example is included in this paper to elaborate the use of MBSE in the system failure analysis.


Sign in / Sign up

Export Citation Format

Share Document