aggregate structures
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 27)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 26 (2) ◽  
pp. 229-242
Author(s):  
Amanda Laca ◽  
Mario Diaz ◽  
Adriana Laca ◽  
Paula Mateos

The structure of real food is a key factor to be considered in order to control microbial growth. A pastry filling has been employed as model food to study the growth of Staphylococcus under different conditions. Additionally, the structure of the food system has been characterised by means of rheological measurements. Frequency sweeps showed that, in all cases, the elastic component determines the rheological behaviour of model pastry filling (G' > G''). Values obtained for the coordination number (z) and the proportional coefficient (A) indicated that the model food exhibits more aggregate structures and stronger links at lower temperatures. According to the maximum specific growth rates, the Staphylococcus growth in the model pastry filling was clearly conditioned by oxygen diffusion, which is limited by the food matrix, and also by the incubation temperature. In addition, the analysis of Staphylococcus growth at different temperatures suggested the influence of the pastry filling structure on microorganism behaviour.


Author(s):  
Benjamin C Creekmore ◽  
Yi-Wei Chang ◽  
Edward B Lee

Abstract Neurogenerative diseases are characterized by diverse protein aggregates with a variety of microscopic morphologic features. Although ultrastructural studies of human neurodegenerative disease tissues have been conducted since the 1960s, only recently have near-atomic resolution structures of neurodegenerative disease aggregates been described. Solid-state nuclear magnetic resonance spectroscopy and X-ray crystallography have provided near-atomic resolution information about in vitro aggregates but pose logistical challenges to resolving the structure of aggregates derived from human tissues. Recent advances in cryo-electron microscopy (cryo-EM) have provided the means for near-atomic resolution structures of tau, amyloid-β (Aβ), α-synuclein (α-syn), and transactive response element DNA-binding protein of 43 kDa (TDP-43) aggregates from a variety of diseases. Importantly, in vitro aggregate structures do not recapitulate ex vivo aggregate structures. Ex vivo tau aggregate structures indicate individual tauopathies have a consistent aggregate structure unique from other tauopathies. α-syn structures show that even within a disease, aggregate heterogeneity may correlate to disease course. Ex vivo structures have also provided insight into how posttranslational modifications may relate to aggregate structure. Though there is less cryo-EM data for human tissue-derived TDP-43 and Aβ, initial structural studies provide a basis for future endeavors. This review highlights structural variations across neurodegenerative diseases and reveals fundamental differences between experimental systems and human tissue derived protein inclusions.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1444
Author(s):  
Mario Caruana ◽  
Angelique Camilleri ◽  
Maria Ylenia Farrugia ◽  
Stephanie Ghio ◽  
Michaela Jakubíčková ◽  
...  

The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.


2021 ◽  
Vol 118 (9) ◽  
pp. e2016072118
Author(s):  
Xin Jiang ◽  
Richard Labaudinière ◽  
Joel N. Buxbaum ◽  
Cecília Monteiro ◽  
Marta Novais ◽  
...  

The transthyretin (TTR) amyloidoses (ATTR) are progressive, degenerative diseases resulting from dissociation of the TTR tetramer to monomers, which subsequently misfold and aggregate, forming a spectrum of aggregate structures including oligomers and amyloid fibrils. To determine whether circulating nonnative TTR (NNTTR) levels correlate with the clinical status of patients with V30M TTR familial amyloid polyneuropathy (FAP), we quantified plasma NNTTR using a newly developed sandwich enzyme-linked immunosorbent assay. The assay detected significant plasma levels of NNTTR in most presymptomatic V30M TTR carriers and in all FAP patients. NNTTR was not detected in age-matched control plasmas or in subjects with other peripheral neuropathies, suggesting NNTTR can be useful in diagnosing FAP. NNTTR levels were substantially reduced in patients receiving approved FAP disease-modifying therapies (e.g., the TTR stabilizer tafamidis, 20 mg once daily). This NNTTR decrease was seen in both the responders (average reduction 56.4 ± 4.2%; n = 49) and nonresponders (average reduction of 63.3 ± 4.8%; n = 32) at 12 mo posttreatment. Notably, high pretreatment NNTTR levels were associated with a significantly lower likelihood of clinical response to tafamidis. Our data suggest that NNTTR is a disease driver whose reduction is sufficient to ameliorate FAP so long as pretreatment NNTTR levels are below a critical clinical threshold.


2021 ◽  
Vol 13 (577) ◽  
pp. eaax0914 ◽  
Author(s):  
Jeffery W. Kelly

Pharmacological evidence, from clinical trials where patients with systemic amyloid diseases are treated with disease-modifying therapies, supports the notion that protein aggregation drives tissue degeneration in these disorders. The protein aggregate structures driving tissue pathology and the commonalities in etiology between these diseases and Alzheimer’s disease are under investigation.


Author(s):  
James Everett ◽  
Jake Brooks ◽  
Joanna F. Collingwood ◽  
Neil D. Telling

Nanoscale resolution X-ray spectromicroscopy shows the co-incubation of β-amyloid (Aβ) and iron(iii) to result in aggregate structures displaying nanoscale heterogeneity in Aβ and iron chemistry, including the formation of potentially cytotoxic Fe0.


Sign in / Sign up

Export Citation Format

Share Document