scholarly journals Reduced human-biting preferences by the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: Controlled, competitive host-preference experiments in Tanzania

2020 ◽  
Author(s):  
Yeromin P Mlacha ◽  
Prosper P. Chaki ◽  
Athuman Muhili ◽  
Dennis J. Massue ◽  
Marcel Tanner ◽  
...  

Abstract BackgroundHost preference is a critical determinant of human exposure to vector-borne infections and also the impact of interventions. Widespread use of long-lasting insecticides treated nets (LLINs) and, indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto was experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. MethodsEight Ifakara Tent Trap (ITT), half of them baited with humans or bovine calves were simultaneously used to catch malaria vectors in open field sites urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference of each malaria vector species present at each site. ResultsThe estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae in the urban setting, indicating no preference for either host in both cases (P=0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P=0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P=0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P =0.037). ConclusionUrban An. arabiensis had a stronger preference for cattle than the rural population in this or previous studies, all of which reported similar traits for this species in rural contexts. Furthermore, the urban An. gambiae assessed here had a weaker preference for humans over cattle than reported by previous studies of the same species in rural contexts. Cattle keeping may therefore particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.

2020 ◽  
Author(s):  
Yeromin P Mlacha ◽  
Prosper P. Chaki ◽  
Athuman Muhili ◽  
Dennis J. Massue ◽  
Marcel Tanner ◽  
...  

Abstract BackgroundHost preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania.MethodsEight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. ResultsThe estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P=0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P=0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P=0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P =0.037). ConclusionUrban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Yeromin P. Mlacha ◽  
Prosper P. Chaki ◽  
Athuman Muhili ◽  
Dennis J. Massue ◽  
Marcel Tanner ◽  
...  

Abstract Background Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. Methods Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. Results The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037). Conclusion Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


2020 ◽  
Author(s):  
Yeromin P Mlacha ◽  
Prosper P. Chaki ◽  
Athuman Muhili ◽  
Dennis J. Massue ◽  
Marcel Tanner ◽  
...  

Abstract Background: Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania.Methods: Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species.Results: The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P=0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P=0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P=0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P =0.037).Conclusion. Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


2017 ◽  
Vol 114 (52) ◽  
pp. E11267-E11275 ◽  
Author(s):  
Hmooda Toto Kafy ◽  
Bashir Adam Ismail ◽  
Abraham Peter Mnzava ◽  
Jonathan Lines ◽  
Mogahid Shiekh Eldin Abdin ◽  
...  

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Polius G. Pinda ◽  
Claudia Eichenberger ◽  
Halfan S. Ngowo ◽  
Dickson S. Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. Methods The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. Findings At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. Conclusions In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


2020 ◽  
Author(s):  
Polius Gerazi Pinda ◽  
Claudia Eichenberger ◽  
Halfan S Ngowo ◽  
Dickson S Msaky ◽  
Said Abbasi ◽  
...  

Abstract BackgroundLong-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used.MethodsThe study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes.FindingsAt baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (>98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%.ConclusionsIn south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


2020 ◽  
Author(s):  
Polius Gerazi Pinda ◽  
Claudia Eichenberger ◽  
Halfan S Ngowo ◽  
Dickson S Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background: Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector species, Anopheles arabiensis. This study compared the intensities of resistance between the two malaria vectors, so as to improve options for control. Methods: The study used WHO assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from villages across two districts in south-eastern Tanzania and identified using morphological and molecular approaches.Findings: At baseline doses (1×), both species were resistant to the two pyrethroids (permethrin and deltamethrin) but susceptible to the organophosphate (pirimiphos-methyl). An. funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb) at baseline doses. Both species were generally resistant to DDT, except An.arabiensis from one village. An. funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses except in one village. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of pyrethroid in both An. arabiensis and An. funestus achieving mortalities >98%, except for An. funestus from two villages for which permethrin-associated mortalities exceeded 90% but not 98%. Conclusions: In these communities where An. funestus dominates malaria transmission, this study may suggest that the species also have much stronger resistance to pyrethroids than its counterpart, An. arabiensis and can survive more classes of insecticides, including carbamates. The pyrethroid resistance in both species appears to be mostly metabolic and may be temporarily addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new choices of interventions to tackle malaria transmission in such settings. These may include PBO-based LLINs or improved IRS with compounds to which the vectors are susceptible. Additional field validation of these indications will be necessary using age-synchronized mosquitoes.


2016 ◽  
Author(s):  
Angélique Porciani ◽  
Malal Diop ◽  
Nicolas Moiroux ◽  
Tatiana Kadoke-Lambi ◽  
Anna Cohuet ◽  
...  

AbstractThe use of long lasting insecticide nets (LLINs) treated with pyrethroïd is known for its major contribution in malaria control. However, LLINs are suspected to induce behavioral changes in malaria vectors, which may in turn drastically affect their efficacy against Plasmodium sp. transmission. In sub Saharan Africa, where malaria imposes the heaviest burden, the main malaria vectors are widely resistant to pyrethroïds, the insecticide family used on LLINs, which also threatens LLIN efficiency. There is therefore a crucial need for deciphering how insecticide-impregnated materials might affect the host-seeking behavior of malaria vectors in regards to insecticide resistance. In this study, we explored the impact of permethrin-impregnated net on the host attractiveness for Anopheles gambiae mosquitoes, either susceptible to insecticides, or carrying the insecticide resistance conferring allele kdr. Groups of female mosquitoes were released in a dual-choice olfactometer and their movements towards an attractive odor source (a rabbit) protected by insecticide-treated (ITN) or untreated nets (UTN) were monitored. Kdr homozygous mosquitoes, resistant to insecticides, were more attracted by a host behind an ITN than an UTN, while the presence of insecticide on the net did not affect the choice of susceptible mosquitoes. These results suggest that permethrin-impregnated net is detectable by malaria vectors and that the kdr mutation impacts their response to a LLIN protected host. We discuss the implication of these results for malaria vector control.


2022 ◽  
Author(s):  
Akua Obeng Forson ◽  
Isaac A. Hinne ◽  
Shittu B. Dhikrullahi ◽  
Isaac Kwame Sr ◽  
Abdul Rahim Mohammed ◽  
...  

Abstract Background: In Sub-Saharan Africa, there is widespread use of long-lasting insecticidal nets (LLINs) and Indoor residual spraying (IRS) to help control the density of malaria vectors and decrease the incidence of malaria in communities. An understanding of the interactions between increased insecticide use and resting behaviour patterns of malaria mosquitoes is important for an effective vector control programme. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of increasing insecticide resistance in malaria vectors in sub-saharan Africa.Methods: Indoor and outdoor resting Anopheline mosquitoes were sampled during the dry and rainy seasons in five sites that were in 3 ecological landscapes [Sahel savannah (Kpalsogou, Pagaza, Libga), Coastal savannah (Anyakpor) and Forest (Konongo) zones] using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, pit shelter and Prokopack for outdoor collections. PCR based molecular diagnostics were used to determine mosquito speciation, genotype for knockdown resistance mutations (L1014S and L1014F), G119S Ace-1 mutation, specific host blood meal origins and sporozoite infection in field collected mosquitoes.Results: Anopheles gambiae s. l. was the predominant species (89.95%, n = 1,718), followed by An. rufipes (8.48%, n=162), and An. funestus s. l. (1.57%, n = 30). Sibling species of the Anopheles gambiae revealed An. coluzzii accounted for 63% (95% CI: 57.10 – 68.91), followed by An. gambiae s. s [27% (95% CI: 21.66 – 32.55)], and An. arabiensis [9% (95% CI: 6.22 – 13.57)]. The mean resting density of An. gambiae s. l. was higher outdoors (79.63%; 1,368/1,718) than indoors (20.37%; 350/1,718) (z = -4.815, p< 0.0001). The kdr west L1014F and the Ace-1 mutations were highest in indoor resting An. coluzzii and An. gambiae in the sahel-savannah sites compared to the forest and coastal savannah sites. Overall, the blood meal analyses revealed a large proportion of the malaria vectors preferred feeding on humans (70.2 %) than animals (29.8%) in all sites. The sporozoite rates was only detected in indoor resting An. coluzzii from the sahel savannah (5.0%) and forest (2.5%) zones.Conclusion: The study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and persistence of malaria transmission indoors despite the use of LLINs and IRS. Continuous monitoring of changes in resting behavior of mosquitoes and implementation of complementary malaria control interventions are needed to target outdoor resting Anopheles mosquitoes in Ghana.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dieudonné Diloma Soma ◽  
Barnabas Zogo ◽  
Domonbabele François de Sales Hien ◽  
Aristide Sawdetuo Hien ◽  
Didier Alexandre Kaboré ◽  
...  

Abstract Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


Sign in / Sign up

Export Citation Format

Share Document