scholarly journals Machine learning the derivative discontinuity of density-functional theory

Author(s):  
Johannes Gedeon ◽  
Jonathan Schmidt ◽  
Matthew Hodgson ◽  
Jack Wetherel ◽  
Carlos Benavides-Riveros ◽  
...  

Abstract Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. As such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (i) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (ii) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.

2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Maituo Yu ◽  
Shuyang Yang ◽  
Chunzhi Wu ◽  
Noa Marom

AbstractWithin density functional theory (DFT), adding a Hubbard U correction can mitigate some of the deficiencies of local and semi-local exchange-correlation functionals, while maintaining computational efficiency. However, the accuracy of DFT+U largely depends on the chosen Hubbard U values. We propose an approach to determining the optimal U parameters for a given material by machine learning. The Bayesian optimization (BO) algorithm is used with an objective function formulated to reproduce the band structures produced by more accurate hybrid functionals. This approach is demonstrated for transition metal oxides, europium chalcogenides, and narrow-gap semiconductors. The band structures obtained using the BO U values are in agreement with hybrid functional results. Additionally, comparison to the linear response (LR) approach to determining U demonstrates that the BO method is superior.


2014 ◽  
Vol 16 (28) ◽  
pp. 14378-14387 ◽  
Author(s):  
Paula Mori-Sánchez ◽  
Aron J. Cohen

Manifestations of the derivative discontinuity of the energy in density functional theory are demonstrated in simple systems in chemistry and physics.


2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>


2019 ◽  
Author(s):  
Eli Kraisler

The present work is a review of two analytical properties of the exact exchange-correlation (xc) functional in density-functional theory. These properties are the asymptotic behavior of the xc energy density per particle and the asymptotic behavior of the Kohn-Sham potential, in finite many-electron systems. The derivation of the asymptotic forms for both quantities is reviewed, employing the concepts of the adiabatic connection and of the xc hole with relation to the first quantity and the electron exact factorization approach for the second one. Furthermore, it is shown that the correct asymptotic behavior of one of the aforementioned quantities does not guarantee a correct behavior of the other. In this process, a new quantity, the xc hole response function, is defined and its exact exchange part is analytically derived. The extent to which existing xc approximations satisfy the named exact properties is reviewed and the relationship between correct asymptotics and freedom from one-electron self-interaction in DFT is discussed. Finally, a strategy for development of advanced approximations for exchange and correlation with a correct asymptotic behavior is suggested.<br>


Sign in / Sign up

Export Citation Format

Share Document