scholarly journals Heisenberg Spin Hamiltonian Derived from a Multiple Grand Canonical Spin Density Functional Theory with a Principal Nonlocal Exchange–Correlation Energy Functional

2022 ◽  
Vol 91 (1) ◽  
Author(s):  
Masami Kusunoki
2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>


2004 ◽  
Vol 18 (02n03) ◽  
pp. 73-82 ◽  
Author(s):  
ROBERT K. NESBET

Due to efficient scaling with electron number N, density functional theory (DFT) is widely used for studies of large molecules and solids. Restriction of an exact mean-field theory to local potential functions has recently been questioned. This review summarizes motivation for extending current DFT to include nonlocal one-electron potentials, and proposes methodology for implementation of the theory. The theoretical model, orbital functional theory (OFT), is shown to be exact in principle for the general N-electron problem. In practice it must depend on a parametrized correlation energy functional. Functionals are proposed suitable for short-range Coulomb-cusp correlation and for long-range polarization response correlation. A linearized variational cellular method (LVCM) is proposed as a common formalism for molecules and solids. Implementation of nonlocal potentials is reduced to independent calculations for each inequivalent atomic cell.


Sign in / Sign up

Export Citation Format

Share Document