scholarly journals Joint Reconstruction Framework of Compressed Sensing and Nonlinear Parallel Imaging for Dynamic Cardiac Magnetic Resonance Imaging

Author(s):  
Zhanqi Hu ◽  
Cailei Zhao ◽  
Xia Zhao ◽  
Lingyu Kong ◽  
Jun Yang ◽  
...  

Abstract Compressed Sensing (CS) and parallel imaging are two promising techniques that accelerate the MRI acquisition process. Combining these two techniques is of great interest due to the complementary information used in each. In this study, we propose a new reconstruction framework for dynamic cardiac imaging that takes advantage of both CS-based dynamic imaging and one nonlinear parallel imaging technique. The method decouples the reconstruction process into two sequential steps: use CS to reconstruct a series of aliased dynamic images from the highly undersampled k-space data; use nonlinear GRAPPA method, one nonlinear technique of parallel imaging, to reconstruct the original dynamic images from the k-space data that has been reconstructed by CS. The sampling scheme of the proposed method is designed to simultaneously satisfy the incoherent undersampling requirement for CS and the structured undersampling requirement for nonlinear parallel imaging. Four in vivo experiments of dynamic cardiac cine MRI were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show the proposed method of dynamic cardiac cine MRI is superior at reducing aliasing artifacts and preserving the spatial details and temporal variations, when compared with k-t FOCUSS and k-t FOCUSS with sensitivity encoding, using the same numbers of measurements. The proposed joint reconstruction framework effectively combines the CS method and one nonlinear technique of parallel imaging, and improves the image quality of dynamic cardiac cine MRI reconstruction when comparing to the state-of-the-art methods.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhanqi Hu ◽  
Cailei Zhao ◽  
Xia Zhao ◽  
Lingyu Kong ◽  
Jun Yang ◽  
...  

AbstractCompressed Sensing (CS) and parallel imaging are two promising techniques that accelerate the MRI acquisition process. Combining these two techniques is of great interest due to the complementary information used in each. In this study, we proposed a novel reconstruction framework that effectively combined compressed sensing and nonlinear parallel imaging technique for dynamic cardiac imaging. Specifically, the proposed method decouples the reconstruction process into two sequential steps: In the first step, a series of aliased dynamic images were reconstructed from the highly undersampled k-space data using compressed sensing; In the second step, nonlinear parallel imaging technique, i.e. nonlinear GRAPPA, was utilized to reconstruct the original dynamic images from the reconstructed k-space data obtained from the first step. In addition, we also proposed a tailored k-space down-sampling scheme that satisfies both the incoherent undersampling requirement for CS and the structured undersampling requirement for nonlinear parallel imaging. The proposed method was validated using four in vivo experiments of dynamic cardiac cine MRI with retrospective undersampling. Experimental results showed that the proposed method is superior at reducing aliasing artifacts and preserving the spatial details and temporal variations, compared with the competing k-t FOCUSS and k-t FOCUSS with sensitivity encoding methods, with the same numbers of measurements.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xianchao Xiu ◽  
Lingchen Kong

It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampledk-tspace data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Dong Wang ◽  
Lori R. Arlinghaus ◽  
Thomas E. Yankeelov ◽  
Xiaoping Yang ◽  
David S. Smith

Purpose. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS) theory makes it possible to recover MR images from randomly undersampled k-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast. Methods. We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT), Haar wavelet transform (WT), total variation (TV), second-order total generalized variation (TGVα2), and nuclear norm (NN). We measured the signal-to-error ratio (SER) of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs) of the derived pharmacokinetic parameters Ktrans (volume transfer constant) and ve (extravascular-extracellular volume fraction) across a population of random sampling schemes. Results. NN produced the lowest image error (SER: 29.1), while TV/TGVα2 produced the most accurate Ktrans (CCC: 0.974/0.974) and ve (CCC: 0.916/0.917). WT produced the highest image error (SER: 21.8), while FT produced the least accurate Ktrans (CCC: 0.842) and ve (CCC: 0.799). Conclusion. TV/TGVα2 should be used as temporal constraints for CS DCE-MRI of the breast.


2015 ◽  
Vol 75 (4) ◽  
pp. 1525-1536 ◽  
Author(s):  
Javier Royuela-del-Val ◽  
Lucilio Cordero-Grande ◽  
Federico Simmross-Wattenberg ◽  
Marcos Martín-Fernández ◽  
Carlos Alberola-López

2014 ◽  
Vol 33 (11) ◽  
pp. 2069-2085 ◽  
Author(s):  
Huisu Yoon ◽  
Kyung Sang Kim ◽  
Daniel Kim ◽  
Yoram Bresler ◽  
Jong Chul Ye

2017 ◽  
Vol 79 (5) ◽  
pp. 2745-2751 ◽  
Author(s):  
Hassan Haji‐Valizadeh ◽  
Amir A. Rahsepar ◽  
Jeremy D. Collins ◽  
Elwin Bassett ◽  
Tamara Isakova ◽  
...  

2019 ◽  
Vol 58 ◽  
pp. 44-55 ◽  
Author(s):  
Alejandro Godino-Moya ◽  
Javier Royuela-del-Val ◽  
Muhammad Usman ◽  
Rosa-María Menchón-Lara ◽  
Marcos Martín-Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document