sparse model
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 56)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2078 (1) ◽  
pp. 012012
Author(s):  
Song Yao ◽  
Lipeng Cui ◽  
Sining Ma

Abstract In recent years, the sparse model is a research hotspot in the field of artificial intelligence. Since the Lasso model ignores the group structure among variables, and can only achieve the selection of scattered variables. Besides, Group Lasso can only select groups of variables. To address this problem, the Sparse Group Log Ridge model is proposed, which can select both groups of variables and variables in one group. Then the MM algorithm combined with the block coordinate descent algorithm can be used for solving. Finally, the advantages of the model in terms of variables selection and prediction are shown through the experiment.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012006
Author(s):  
Lipeng Cui ◽  
Jie Shen ◽  
Song Yao

Abstract The sparse model plays an important role in many aeras, such as in the machine learning, image processing and signal processing. The sparse model has the ability of variable selection, so they can solve the over-fitting problem. The sparse model can be introduced into the field of support vector machine in order to get classification of the labels and sparsity of the variables simultaneously. This paper summarizes various sparse support vector machines. Finally, we revealed the research directions of the sparse support vector machines in the future.


2021 ◽  
pp. 1-16
Author(s):  
Damien Guého ◽  
Puneet Singla ◽  
Manoranjan Majji ◽  
Robert G. Melton

2021 ◽  
Author(s):  
FENGPING AN ◽  
Jianrong Wang

Abstract As the key component of a mechanical system, rolling bearings will cause paralysis of the entire mechanical system once they fail. In recent years, considering the high generalization ability and nonlinear modeling ability of deep learning, a rolling bearing fault diagnosis method based on deep learning has been formed, and good results have been achieved. However, because this kind of method is still in the initial development stage, its main problems are as follows. First, it is difficult to extract the composite fault signal feature of rolling bearing. Second, the existing deep learning rolling bearing fault diagnosis methods cannot well consider the problem of multi-scale information of rolling bearing signals. Therefore, this paper first proposes the overlapping group sparse model. It constructs weight coefficients by analyzing the salient features of the signal. It uses convex optimization techniques to solve the sparse optimization model, and applies the method to the feature extraction of rolling bearing composite faults. For the problem of multi-scale feature information extraction of rolling bearing composite fault signals, this paper proposes a new deep complex convolutional neural network model. This model fully considers the multi-scale information of rolling bearing signals. The complex information in this model not only contains rich representation ability, but also can extract more scale information. Finally, the classifier of this model is used to identify rolling bearing faults. Based on this, this paper proposes a new rolling bearing fault diagnosis algorithm based on overlapping group sparse model-deep complex convolutional neural network. The experimental results show that the method proposed in this paper can not only effectively identify rolling bearing faults under constant operating conditions, but also accurately identify rolling bearing fault signals under changing operating conditions. Additionally, the classification accuracy of the method proposed in this paper is greatly improved compared with traditional machine learning methods. It also has certain advantages over other deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document