scholarly journals Intrinsic coupling between spatially-separated surface Fermi-arcs in Weyl orbit quantum Hall states

2020 ◽  
Author(s):  
Shinichi Nishihaya ◽  
Masaki Uchida ◽  
Yusuke Nakazawa ◽  
Markus Kriener ◽  
Yasujiro Taguchi ◽  
...  

Abstract Topological semimetals hosting bulk Weyl points and surface Fermi-arc states are expected to realize unconventional Weyl orbits, which interconnect two surface Fermi-arc states on opposite sample surfaces under magnetic fields. While the presence of Weyl orbits has been proposed to play a vital role in recent observation of quantum Hall effect even in three-dimensional topological semimetals, actual spatial distribution of the quantized surface transport has been experimentally elusive. Here, we demonstrate intrinsic coupling between two spatially-separated surface states in the Weyl orbits by measuring a dual-gate device of a Dirac semimetal film. Independent scans of top- and back-gate voltages reveal concomitant modulation of doubly-degenerate quantum Hall states, which is not possible in conventional surface orbits as in topological insulators. Our results evidencing the unique spatial distribution of Weyl orbits provide new opportunities for controlling the novel quantized transport by various means such as external fields and interface engineering.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
You-Zhong Yu ◽  
Chih-Yu Kuo ◽  
Ruey-Lin Chern ◽  
C. T. Chan

AbstractWe analyze the photonic topological phases in bianisotropic metamaterials characterized by a chirality tensor with zero trace. We found that the strength of chirality component determines the topological character of the metamaterial. The underlying medium can be considered as a topological semimetal with the nontrivial band gap in the momentum space. The topological properties are described by the spin-orbit Hamiltonians with spin 1 and characterized by the nonzero topological invariants. In particular, photonic quantum Hall states exist when the longitudinal chirality component exceeds the permittivity, whereas photonic quantum spin Hall states are present when the chiral nihility occurs. Considering the dispersion in the frequency domain, the bianisotropic metamaterial is regarded as a photonic Weyl system that supports the Weyl points and Fermi arcs. The topological features are further illustrated with the robust transport of edge states at an irregular boundary of the metamaterial.


2021 ◽  
Vol 103 (15) ◽  
Author(s):  
Morad Ebrahimkhas ◽  
Mohsen Hafez-Torbati ◽  
Walter Hofstetter

2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Benoit Sirois ◽  
Lucie Maude Fournier ◽  
Julien Leduc ◽  
William Witczak-Krempa

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
L. V. Kulik ◽  
V. A. Kuznetsov ◽  
A. S. Zhuravlev ◽  
V. Umansky ◽  
I. V. Kukushkin

Sign in / Sign up

Export Citation Format

Share Document