quantum point
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 91)

H-INDEX

58
(FIVE YEARS 4)

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Luke W. Smith ◽  
Hong-Bin Chen ◽  
Che-Wei Chang ◽  
Chien-Wei Wu ◽  
Shun-Tsung Lo ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanjing Zhang ◽  
Tao Shang ◽  
Ranyiliu Chen ◽  
Jianwei Liu
Keyword(s):  

2021 ◽  
Vol 47 (12) ◽  
pp. 996-1000
Author(s):  
M. Belogolovskii ◽  
E. Zhitlukhina ◽  
P. Seidel

Author(s):  
Irina I. Yakimenko ◽  
Ivan P. Yakimenko

Abstract Quantum wires (QWs) and quantum point contacts (QPCs) have been realized in GaAs/AlGaAs heterostructures in which a two-dimensional electron gas (2DEG) resides at the interface between GaAs and AlGaAs layered semiconductors. The electron transport in these structures has previously been studied experimentally and theoretically, and a 0.7 conductance anomaly has been discovered. The present paper is motivated by experiments with a QW in shallow symmetric and asymmetric confinements that have shown additional conductance anomalies at zero magnetic field. The proposed device consists of a QPC that is formed by split gates and a top gate between two large electron reservoirs. This paper is focused on the theoretical study of electron transport through a wide top-gated QPC in a low-density regime and is based on density functional theory. The electron-electron interaction and shallow confinement make the splitting of the conduction channel into two channels possible. Each of them becomes spin-polarized at certain split and top gates voltages and may contribute to conductance giving rise to additional conductance anomalies. For symmetrically loaded split gates two conduction channels contribute equally to conductance. For the case of asymmetrically applied voltage between split gates conductance anomalies may occur between values of 0.25(2e2/h) and 0.7(2e2/h) depending on the increased asymmetry in split gates voltages. This corresponds to different degrees of spin-polarization in the two conduction channels that contribute differently to conductance. In the case of a strong asymmetry in split gates voltages one channel of conduction is pinched off and just the one remaining channel contributes to conductance. We have found that on the perimeter of the anti-dot there are spin-polarized states. These states may also contribute to conductance if the radius of the anti-dot is small enough and tunnelling between these states may occur. The spin-polarized states in the QPC with shallow confinement tuned by electric means may be used for the purposes of quantum technology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koki Ono ◽  
Toshiya Higomoto ◽  
Yugo Saito ◽  
Shun Uchino ◽  
Yusuke Nishida ◽  
...  

AbstractQuantum transport is ubiquitous in physics. So far, quantum transport between terminals has been extensively studied in solid state systems from the fundamental point of views such as the quantized conductance to the applications to quantum devices. Recent works have demonstrated a cold-atom analog of a mesoscopic conductor by engineering a narrow conducting channel with optical potentials, which opens the door for a wealth of research of atomtronics emulating mesoscopic electronic devices and beyond. Here we realize an alternative scheme of the quantum transport experiment with ytterbium atoms in a two-orbital optical lattice system. Our system consists of a multi-component Fermi gas and a localized impurity, where the current can be created in the spin space by introducing the spin-dependent interaction with the impurity. We demonstrate a rich variety of localized-impurity-induced quantum transports, which paves the way for atomtronics exploiting spin degrees of freedom.


2021 ◽  
Vol 104 (20) ◽  
Author(s):  
M. Otteneder ◽  
M. Hild ◽  
Z. D. Kvon ◽  
E. E. Rodyakina ◽  
M. M. Glazov ◽  
...  

2021 ◽  
Author(s):  
Yuan Ren ◽  
Joshua Folk ◽  
Yigal Meir ◽  
Tomaz Rejec ◽  
Werner Wegscheider

Abstract Mesoscopic circuit elements such as quantum dots and quantum point contacts (QPCs) offer a uniquely controllable platform for engineering complex quantum devices, whose tunability makes them ideal for generating and investigating interacting quantum systems. However, the conductance measurements commonly employed in mesoscopics experiments are poorly suited to discerning correlated phenomena from those of single-particle origin. Here, we introduce non-equilibrium thermopower measurements as a novel approach to probing the local density of states (LDOS), offering an energy-resolved readout of many-body effects. We combine differential thermopower measurements with non-equilibrium density functional theory (DFT) to both confirm the presence of a localized state at the saddle point of a QPC and reveal secondary states that emerge wherever the reservoir chemical potential intersects the gate-induced potential barrier. These experiments establish differential thermopower imaging as a robust and general approach to exploring quantum many-body effects in mesoscopic circuits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bartłomiej Rzeszotarski ◽  
Alina Mreńca-Kolasińska ◽  
François M. Peeters ◽  
Bartłomiej Szafran

AbstractThe transconductance and effective Landé $$g^*$$ g ∗ factors for a quantum point contact defined in silicene by the electric field of a split gate is investigated. The strong spin–orbit coupling in buckled silicene reduces the $$g^*$$ g ∗ factor for in-plane magnetic field from the nominal value 2 to around 1.2 for the first- to 0.45 for the third conduction subband. However, for perpendicular magnetic field we observe an enhancement of $$g^*$$ g ∗ factors for the first subband to 5.8 in nanoribbon with zigzag and to 2.5 with armchair edge. The main contribution to the Zeeman splitting comes from the intrinsic spin–orbit coupling defined by the Kane–Mele form of interaction.


2021 ◽  
Vol 7 (40) ◽  
Author(s):  
Evgeny Mikheev ◽  
Ilan T. Rosen ◽  
David Goldhaber-Gordon

Sign in / Sign up

Export Citation Format

Share Document