scholarly journals Adaptive tracking control for uncertain nonlinear systems subject to unknown control coefficients, state constraints, and input saturation

Author(s):  
Chunxiao Wang ◽  
Lu Qi ◽  
Yan Zhao ◽  
Jiali Yu

Abstract This article is committed to studying the tracking control problem for a class of uncertain nonlinear system with unknown control coefficients. The system is subject to full state constraints, input saturation constraint, and external disturbances simultaneously. By introducing a hyperbolic tangent function to approximate the saturated input function, the sharp corner caused by the input saturation is avoided. In the meanwhile, an auxiliary system is constructed to compensate the resulting approximation error. By using the barrier Lyapunov function (BLF) based adaptive backsteping control, the Nussbaum-type adaptive controllers are constructed for the augmented system with unknown control direction. It not only ensures the system states are always within the constrained range, but also guarantees the tracking performance of the system, no matter whether the control direction of the system is known or not. Meanwhile, dynamic surface control (DSC) is used in the controller design, which avoids ”computation explosion” caused by the repeated derivation of virtual control law. Aiming at the nonparametric uncertainty of the system, a common adaptive law is designed by combining the unknown constant bounds of the external disturbance with the error term caused by input saturation estimation. It improves the tracking performance of the system and reduces the burden of the controller greatly. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control scheme in three scenarios.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Qifei Du ◽  
Lin Sha ◽  
Wuxi Shi ◽  
Liankun Sun

In order to synthesize controllers for wheeled mobile robots (WMRs), some design techniques are usually based on the assumption that the center of mass is at the center of the robot itself. Nevertheless, the exact position of the center of mass is not easy to measure, thus WMRs is a typical uncertain nonlinear system with unknown control direction. Based on the fast terminal sliding mode control, an adaptive fuzzy path tracking control scheme is proposed for mobile robots with unknown control direction. In this scheme, the fuzzy system is used to approximate unknown functions, and a robust controller is constructed to compensate for the approximation error. The Nussbaum-type functions are integrated into the robust controller to estimate the unknown control direction. It is proved that all the signals in the closed-loop system are bounded, and the tracking error converges to a small neighborhood of the origin in a limited time. The effectiveness of the proposed scheme is illustrated by a simulation example.


Sign in / Sign up

Export Citation Format

Share Document