scholarly journals A New Time-Space Attention Mechanism Driven Multi-Feature Fusion Method for Tool Wear Monitoring

Author(s):  
Tingting Feng ◽  
Liang Guo ◽  
Hongli Gao ◽  
Tao Chen ◽  
Yaoxiang Yu ◽  
...  

Abstract In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals in the feature space can provide complementary information. In addition, the monitoring signal is time series data, which also contains a wealth of tool degradation information in the time dimension. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. This paper proposes a new time-space attention mechanism driven multi-feature fusion method to realize the tool wear monitoring. Firstly, lots of features are established from different sensor signals and selected preliminarily. Then, a new feature fusion model with time-space attention mechanism is constructed to fuse features in time and space dimensions. Finally, the tool degradation model is established according to the predicted wear, and the tool remaining useful life is predicted by particle filter. The effectiveness of this method is verified by a tool life cycle wear experiment. Through comparing with other feature fusion models, it is demonstrated that the proposed method realizes the tool wear monitoring more accurately and has better stability.

2014 ◽  
Vol 797 ◽  
pp. 17-22 ◽  
Author(s):  
D.R. Salgado ◽  
I. Cambero ◽  
J.M. Herrera ◽  
J. García-Sanz-Calcedo ◽  
Alfonso González González ◽  
...  

This paper presents a tool wear monitoring system that uses the same signals and prediction strategy for monitoring the machining process of different materials, i.e., a steel and an aluminium alloy. It is an important requirement for a monitoring system to be applied in real applications. Experiments have been performed on a lathe over a range of different cutting conditions, and TiN coated tools were used. The monitoring signals used are the AC feed drive motor current and the cutting vibrations. The geometry tool parameters used as inputs are the tool angle and the radius. The performance of the proposed system was validated against different experiments. In particular, different tests were performed using different numbers of experiments obtaining a rmse for tool wear estimation of 17.63 μm and 13.45 μm for steel and aluminium alloys respectively.


1990 ◽  
Vol 28 (10) ◽  
pp. 1861-1869 ◽  
Author(s):  
YOICHI MATSUMOTO ◽  
NGUN TJIANG ◽  
BOBBIE FOOTE ◽  
YNGVE NAERHEIMH

Sign in / Sign up

Export Citation Format

Share Document