scholarly journals Reversible Topochemical Polymerization and Depolymerization of a Crystalline Three-Dimensional Porous Organic Polymer with C–C Bond Linkages

Author(s):  
Chenyue Sun ◽  
Julius Oppenheim ◽  
Grigorii Skorupskii ◽  
Luming Yang ◽  
Mircea Dinca

Abstract Three-dimensionally connected porous organic polymers are of interest because of their potential in adsorption, separation, and sensing, among others. When crystalline, they also afford accurate structure description, which in turn can enable particular functions. However, crystallization of three-dimensional (3D) polymers is challenging. This is especially true when targeting polymerization via stable C–C bonds, whose formation is usually irreversible and does not allow for error correction typically required for crystallization. Here, we report polyMTBA, the first 3D-connected crystalline organic polymer with permanent porosity, here formed via C–C linkages. High crystallinity is achieved by solid-state topochemical reaction within monomer MTBA crystals. polyMTBA is recyclable via thermal depolymerization and is solution-processable via its soluble monomers. These results reveal topochemical polymerization as a compelling methodology for generating stable, crystalline, and porous 3D organic frameworks.

2021 ◽  
Author(s):  
Chenyue Sun ◽  
Julius Oppenheim ◽  
Grigorii Skorupskii ◽  
Luming Yang ◽  
Mircea Dincă

Three-dimensionally connected porous organic polymers are of interest because of their potential in adsorption, separation, and sensing, among others. When crystalline, they also afford accurate structure description, which in turn can enable particular functions. However, crystallization of three-dimensional (3D) polymers is challenging. This is especially true when targeting polymerization via stable C–C bonds, whose formation is usually irreversible and does not allow for error correction typically required for crystallization. Here, we report polyMTBA, the first 3D-connected crystalline organic polymer with permanent porosity, here formed via C–C linkages. High crystallinity is achieved by solid-state topochemical reaction within monomer MTBA crystals. polyMTBA is recyclable via thermal depolymerization and is solution-processable via its soluble monomers. These results reveal topochemical polymerization as a compelling methodology for generating stable, crystalline, and porous 3D organic frameworks.


2017 ◽  
Vol 8 (30) ◽  
pp. 4327-4331 ◽  
Author(s):  
Wei Zhu ◽  
Zheng-Dong Ding ◽  
Xuan Wang ◽  
Tao Li ◽  
Rui Shen ◽  
...  

A porphyrin-based porous organic polymer PPOP-1(Fe) with a three-dimensional diamond structure was synthesized, which exhibits high stability and excellent catalytic efficiency as a biomimetic catalyst.


2020 ◽  
Vol 4 (3) ◽  
pp. 933-940
Author(s):  
N. Angulakshmi ◽  
R. Baby Dhanalakshmi ◽  
Murugavel Kathiresan ◽  
Yingke Zhou ◽  
A. Manuel Stephan

A triazene-p-phenylenediamine-based porous organic polymer (TP-POP) was successfully synthesized and incorporated as a filler in the PEO + LiTFSI matrix.


2017 ◽  
Vol 121 (16) ◽  
pp. 8850-8856 ◽  
Author(s):  
Michele R. Chierotti ◽  
Muhamed Amin ◽  
Youssef S. Hassan ◽  
Rana R. Haikal ◽  
Claudio Garino ◽  
...  

2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


2017 ◽  
Vol 35 (7) ◽  
pp. 688
Author(s):  
Hongwei WANG ◽  
Zhongshan LIU ◽  
Xiaojun PENG ◽  
Junjie OU ◽  
Mingliang YE

Author(s):  
Pramod Kumar ◽  
Animesh Das ◽  
Biplab Maji

The phosphorous-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous...


Sign in / Sign up

Export Citation Format

Share Document