scholarly journals Identification of a Conserved Neutralizing Epitope in Seneca Valley Virus VP2 Protein: New Insight for Epitope Vaccine Designment

Author(s):  
Wei Wen ◽  
Xinghua Chen ◽  
Qiang Lv ◽  
Huanchun Chen ◽  
Ping Qian ◽  
...  

Abstract Background Seneca Valley virus (SVV) is a picornavirus that causes vesicular disease in swine. Clinical characteristics of the disease is similar to common viral diseases such as foot-and-mouth disease virus, porcine vesicular disease virus, and vesicular stomatitis virus, which can cause vesicles in the nose or hoof of pigs. Therefore, developing tools for detecting SVV infection is critical and urgent. Methods The neutralizing antibodies were produced to detect the neutralizing epitope. Results Five SVV neutralizing monoclonal antibodies (mAb), named 2C8, 3E4, 4C3, 6D7, and 7C11, were generated by immunizing mouses with ultra-purified SVV-LNSY01-2017. All five monoclonal antibodies exhibited high neutralizing titers to SVV. The epitopes targeted by these mAbs were further identified by peptide scanning using GST fusion peptides. The 153QELNEE158 peptide is defined as the smallest linear neutralizing epitope. The antibodies showed no reactivity to VP2 single mutants E157A. Furthermore, the antibodies showed no neutralizing activity with the recombinant virus (SVV-E157A). Conclusion The five monoclonal antibodies and identified epitopes may contribute to further research on the structure and function of VP2 and the development of diagnostic methods for detecting different SVV strains. Additionally, the epitope recognized by monoclonal antibodies against VP2 protein may provide insights for novel SVV vaccines and oncolytic viruses development.

2012 ◽  
Vol 93 (7) ◽  
pp. 1442-1448 ◽  
Author(s):  
Haiwei Wang ◽  
Mei Xue ◽  
Decheng Yang ◽  
Guohui Zhou ◽  
Donglai Wu ◽  
...  

Previously, we finely mapped the neutralizing epitopes recognized by foot-and-mouth disease virus (FMDV) type Asia1-specific mAb 3E11 and FMDV type O-specific mAb 8E8. In this study, we engineered recombinant FMDVs of the serotype Asia1 (rFMDVs) displaying the type O-neutralizing epitope recognized by the mAb 8E8. These epitope-inserted viruses were genetically stable and exhibited growth properties that were similar to those of their parental virus. Importantly, the recombinant virus rFMDV-C showed neutralization sensitivity to both FMDV type Asia1 and type O mAbs, as well as to polyclonal antibodies. These results indicated that this epitope-inserted virus has the potential to induce neutralizing antibodies against both FMDV type Asia1 and type O. Our results demonstrated that the G-H loop of FMDV type Asia1 effectively displays the protective neutralizing epitopes of other FMDV serotypes, making this an attractive approach for the design of novel FMDV vaccines.


2002 ◽  
Vol 83 (6) ◽  
pp. 1387-1395 ◽  
Author(s):  
Belén Borrego ◽  
Juan Antonio García-Ranea ◽  
Alastair Douglas ◽  
Emiliana Brocchi

The antigenic linear map of swine vesicular disease virus (SVDV) has been studied using a repertoire of monoclonal antibodies (mAbs) raised against a recombinant SVDV polyprotein, P1. Peptide-scanning analyses, cross-reactivity studies with homologous and heterologous viruses and predicted location on a computer-generated three-dimensional model of the capsid proteins have allowed the identification of five main linear sites. Two sites, the N terminus of VP3 and amino acids 51–60 on VP1, correspond to internal areas, conserved not only between SVDV isolates but also in the related enterovirus coxsackievirus B5. In contrast, three other regions, amino acids 142–161 of VP2, 61–70 of VP3 and the C terminus of VP1, are exposed on the external face of the capsid and subjected to antigenic variation, even among different SVDV isolates. Further minor sites that were antigenically conserved were identified on VP4. In contrast with conformational sites described previously, none of the linear epitopes identified in this work is involved in neutralization of virus infectivity and post-infection swine sera did not inhibit the binding of mAbs with the relevant epitopes. Both of these observations suggest that linear epitopes are poorly immunogenic in pigs. The characterization of linear sites has contributed to a better understanding of the antigenic structure of SVDV and mAbs used to this purpose may provide a useful tool for the improvement of diagnostic methods, such as antigen detection systems, and analyses of the antigenic profile of SVDV isolates.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 729
Author(s):  
Bo Yang ◽  
Xiaohui Zhang ◽  
Dajun Zhang ◽  
Jing Hou ◽  
GuoWei Xu ◽  
...  

Foot-and-mouth disease virus (FMDV) causes a highly contagious vesicular disease in cloven-hoofed livestock that results in severe consequences for international trade, posing a great economic threat to agriculture. The FMDV infection antagonizes the host immune responses via different signaling pathways to achieve immune escape. Strategies to escape the cell immune system are key to effective infection and pathogenesis. This review is focused on summarizing the recent advances to understand how the proteins encoded by FMDV antagonize the host innate and adaptive immune responses.


2012 ◽  
Vol 27 (5) ◽  
pp. 316-319 ◽  
Author(s):  
Tong Lin ◽  
Junjun Shao ◽  
Huiyun Chang ◽  
Shandian Gao ◽  
Guozheng Cong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document