scholarly journals Godunov type scheme for the linear wave equation with Coriolis source term

2017 ◽  
Vol 58 ◽  
pp. 1-26 ◽  
Author(s):  
Emmanuel Audusse ◽  
Stéphane Dellacherie ◽  
Minh Hieu Do ◽  
Pascal Omnes ◽  
Yohan Penel
2011 ◽  
Vol 62 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Daewook Kim ◽  
Yong Han Kang ◽  
Mi Jin Lee ◽  
Il Hyo Jung

2019 ◽  
Vol 27 (1) ◽  
pp. 25-41
Author(s):  
Valeria Bacchelli ◽  
Dario Pierotti ◽  
Stefano Micheletti ◽  
Simona Perotto

Abstract We consider an initial-boundary value problem for the classical linear wave equation, where mixed boundary conditions of Dirichlet and Neumann/Robin type are enforced at the endpoints of a bounded interval. First, by a careful application of the method of characteristics, we derive a closed-form representation of the solution for an impulsive Dirichlet data at the left endpoint, and valid for either a Neumann or a Robin data at the right endpoint. Then we devise a reconstruction procedure for identifying both the interval length and the Robin parameter. We provide a corresponding stability result and verify numerically its performance moving from a finite element discretization.


2016 ◽  
Vol 13 (04) ◽  
pp. 833-860
Author(s):  
Helge Kristian Jenssen ◽  
Charis Tsikkou

We consider the strategy of realizing the solution of a Cauchy problem (CP) with radial data as a limit of radial solutions to initial-boundary value problems posed on the exterior of vanishing balls centered at the origin. The goal is to gauge the effectiveness of this approach in a simple, concrete setting: the three-dimensional (3d), linear wave equation [Formula: see text] with radial Cauchy data [Formula: see text], [Formula: see text]. We are primarily interested in this as a model situation for other, possibly nonlinear, equations where neither formulae nor abstract existence results are available for the radial symmetric CP. In treating the 3d wave equation, we therefore insist on robust arguments based on energy methods and strong convergence. (In particular, this work does not address what can be established via solution formulae.) Our findings for the 3d wave equation show that while one can obtain existence of radial Cauchy solutions via exterior solutions, one should not expect such results to be optimal. The standard existence result for the linear wave equation guarantees a unique solution in [Formula: see text] whenever [Formula: see text]. However, within the constrained framework outlined above, we obtain strictly lower regularity for solutions obtained as limits of exterior solutions. We also show that external Neumann solutions yield better regularity than external Dirichlet solutions. Specifically, for Cauchy data in [Formula: see text], we obtain [Formula: see text]-solutions via exterior Neumann solutions, and only [Formula: see text]-solutions via exterior Dirichlet solutions.


2019 ◽  
Vol 21 (3) ◽  
pp. 705-760 ◽  
Author(s):  
Joe Keir

AbstractSupersymmetric microstate geometries were recently conjectured (Eperon et al. in JHEP 10:031, 2016. 10.1007/JHEP10(2016)031) to be nonlinearly unstable due to numerical and heuristic evidence, based on the existence of very slowly decaying solutions to the linear wave equation on these backgrounds. In this paper, we give a thorough mathematical treatment of the linear wave equation on both two- and three-charge supersymmetric microstate geometries, finding a number of surprising results. In both cases, we prove that solutions to the wave equation have uniformly bounded local energy, despite the fact that three-charge microstates possess an ergoregion; these geometries therefore avoid Friedman’s “ergosphere instability” (Friedman in Commun Math Phys 63(3):243–255, 1978). In fact, in the three-charge case we are able to construct solutions to the wave equation with local energy that neither grows nor decays, although these data must have non-trivial dependence on the Kaluza–Klein coordinate. In the two-charge case, we construct quasimodes and use these to bound the uniform decay rate, showing that the only possible uniform decay statements on these backgrounds have very slow decay rates. We find that these decay rates are sublogarithmic, verifying the numerical results of Eperon et al. (2016). The same construction can be made in the three-charge case, and in both cases the data for the quasimodes can be chosen to have trivial dependence on the Kaluza–Klein coordinates.


Sign in / Sign up

Export Citation Format

Share Document