In-Situ Landmine Neutralization Using Chemicals to Initiate Low Order Burning of Main Charge

2006 ◽  
Author(s):  
Divyakant L. Patel ◽  
James Dillon ◽  
Noel Wright
Keyword(s):  
2020 ◽  
Author(s):  
Véronique Balland ◽  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges

<p>Rechargeable aqueous aluminium batteries are the subject of growing interest, but the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood with as many mechanisms as studies. Here, we use an original <i>in situ</i> spectroelectrochemical methodology to unambiguously demonstrate that the reversible proton-coupled MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion is the main charge storage mechanism occurring at MnO<sub>2</sub> cathodes over a range of slightly acidic Al<sup>3+</sup>-based aqueous electrolytes. In Zn/MnO<sub>2</sub> assemblies, this mechanism is associated with high gravimetric capacity and discharge potentials, up to 560 mAh·g<sup>-1</sup> and 1.76 V respectively, attractive efficiencies (<i>CE</i> > 98.5 % and <i>EE</i> > 80%) and excellent cyclability (> 750 cycles at 10 A·g<sup>-1</sup>). Finally, we conducted a critical analysis of the data previously published on MnO<sub>x</sub> cathodes in Al<sup>3+</sup>-based aqueous electrolytes to conclude on a universal charge storage mechanism, <i>i.e.</i>, the reversible electrodissolution/electrodeposition of MnO<sub>2</sub>.<i></i></p>


2020 ◽  
Author(s):  
Véronique Balland ◽  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges

<p>Rechargeable aqueous aluminium batteries are the subject of growing interest, but the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood with as many mechanisms as studies. Here, we use an original <i>in situ</i> spectroelectrochemical methodology to unambiguously demonstrate that the reversible proton-coupled MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion is the main charge storage mechanism occurring at MnO<sub>2</sub> cathodes over a range of slightly acidic Al<sup>3+</sup>-based aqueous electrolytes. In Zn/MnO<sub>2</sub> assemblies, this mechanism is associated with high gravimetric capacity and discharge potentials, up to 560 mAh·g<sup>-1</sup> and 1.76 V respectively, attractive efficiencies (<i>CE</i> > 98.5 % and <i>EE</i> > 80%) and excellent cyclability (> 750 cycles at 10 A·g<sup>-1</sup>). Finally, we conducted a critical analysis of the data previously published on MnO<sub>x</sub> cathodes in Al<sup>3+</sup>-based aqueous electrolytes to conclude on a universal charge storage mechanism, <i>i.e.</i>, the reversible electrodissolution/electrodeposition of MnO<sub>2</sub>.<i></i></p>


1974 ◽  
Vol 22 ◽  
pp. 193-203
Author(s):  
L̆ubor Kresák

AbstractStructural effects of the resonance with the mean motion of Jupiter on the system of short-period comets are discussed. The distribution of mean motions, determined from sets of consecutive perihelion passages of all known periodic comets, reveals a number of gaps associated with low-order resonance; most pronounced are those corresponding to the simplest commensurabilities of 5/2, 2/1, 5/3, 3/2, 1/1 and 1/2. The formation of the gaps is explained by a compound effect of five possible types of behaviour of the comets set into an approximate resonance, ranging from quick passages through the gap to temporary librations avoiding closer approaches to Jupiter. In addition to the comets of almost asteroidal appearance, librating with small amplitudes around the lower resonance ratios (Marsden, 1970b), there is an interesting group of faint diffuse comets librating in characteristic periods of about 200 years, with large amplitudes of about±8% in μ and almost±180° in σ, around the 2/1 resonance gap. This transient type of motion appears to be nearly as frequent as a circulating motion with period of revolution of less than one half that of Jupiter. The temporary members of this group are characteristic not only by their appearance but also by rather peculiar discovery conditions.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document