scholarly journals Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations

2013 ◽  
Author(s):  
Alexander Reid
SIMULATION ◽  
1994 ◽  
Vol 62 (4) ◽  
pp. 230-239 ◽  
Author(s):  
Carolyn Jayne Guyse ◽  
Deborah Elaine Buscher ◽  
S. Richard Ellenberger

2002 ◽  
Vol 30 (3) ◽  
pp. 180-197 ◽  
Author(s):  
S. Shoop ◽  
I. Darnell ◽  
K. Kestler

Abstract The objective of this research is to produce a finite element model of tire-terrain interaction that can be used to explore the effects of tire and terrain variables on vehicle mobility and terrain deformation. Such a model would need to account for the deformable nature of both the tire and the terrain and be fully three-dimensional. Thus, it is important that the tire model be very efficient at rolling yet retain realistic surface contact and deformation related to contact. A promising methodology was developed by Darnell for efficiently modeling a tire for vehicle dynamics simulations. The performance of the Darnell model was examined with respect to measured tire deformation as well as to conventional models of the same tire. The Darnell tire model was then rolled across a soil simulating the sand used in off-road vehicle experiments. The combined tire-terrain model presented is fully operational, but optimization and validation are in progress.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Longhai Yang ◽  
Xiqiao Zhang ◽  
Jiekun Gong ◽  
Juntao Liu

This paper is concerned with the effect of real-time maximum deceleration in car-following. The real-time maximum acceleration is estimated with vehicle dynamics. It is known that an intelligent driver model (IDM) can control adaptive cruise control (ACC) well. The disadvantages of IDM at high and constant speed are analyzed. A new car-following model which is applied to ACC is established accordingly to modify the desired minimum gap and structure of the IDM. We simulated the new car-following model and IDM under two different kinds of road conditions. In the first, the vehicles drive on a single road, taking dry asphalt road as the example in this paper. In the second, vehicles drive onto a different road, and this paper analyzed the situation in which vehicles drive from a dry asphalt road onto an icy road. From the simulation, we found that the new car-following model can not only ensure driving security and comfort but also control the steady driving of the vehicle with a smaller time headway than IDM.


2021 ◽  
Author(s):  
Akshay Mishra ◽  
Amit Babalal Nahar ◽  
Sri Kiran Kosanam
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document