dynamics stability
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 33)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Anže Prašnikar ◽  
Blaž Likozar

To reduce CO2 emissions, a flexible process operation for chemical methanol synthesis may be required as the supply of renewable energy-based feedstocks fluctuates. Determining the changing conditions’ analysis for the...


2021 ◽  
Vol 80 (6) ◽  
pp. 359-365
Author(s):  
E. A. Sidorova ◽  
V. O. Pevzner ◽  
A. I. Chechel’nitskiy

Authors describe formation mechanism of long irregularities of the railway track and the importance of their elimination for the track facilities. Based on the results of freight train operation modeling on long irregularities in the traction mode, an analysis of the processes occurring during the motion of heavy trains along a track with such deviations was carried out, modeling was carried out on the basis of the “Universal Mechanism” software package. Based on the results of the calculation, interaction between the track and the rolling stock in the vertical plane was assessed in terms of the magnitude of the vertical force and coeffcients: dynamics, stability margin, Nadal, unloading (in percent) of axle springs of freight car springs. Article analizes the nature of the infuence of the irregularity slope on the decrease in the vertical force transmitted from the wheel to the rail and the change in the traction force on the dynamics of freight cars in the train and passing on long irregularities of the longitudinal profle through the indicators of the vertical force.


2021 ◽  
Author(s):  
Juan Trejos-Taborda ◽  
Luis Reyes-Osorio ◽  
Carlos Garza ◽  
Patricia del Carmen Zambrano-Robledo ◽  
Omar Eduardo Lopez-Botello

Abstract In Laser Powder Bed Fusion (LPBF), melt pool dynamics stability determines the overall quality of a manufactured component. In this work, a numerical model of the LPBF process was developed in order to study and fully understand the behavior of the melt pool dynamics. The numerical model takes into account most of the manufacturing parameters, thermophysical properties, an enhanced thermal conductivity approach and a volumetric heat source in order to precisely mimic LPBF. This research assumes that the energy emitted by the laser interacts with the metal powder with an absorptivity gradient through the layer thickness in order to calculate the thermal history of the process and the evolution of the melt pool dimensions. The obtained results determined that melt pool dimensions follow a thermal pattern, which is caused by the laser scanning strategy of the LPBF process. A new effective width criterion was proposed in the present research in order to accurately relate both calculated and measured dimensions of the melt pool, reducing the relative error of the model and obtaining data scattering with a standard deviation of ±7.21 µm and a relative error of 2.92%.


Author(s):  
Victoria Smith Hussain ◽  
Christopher W. Frames ◽  
Thurmon E. Lockhart

Falls are the leading cause of disability in older adults with a third of adults over the age of 65 falling every year. Quantitative fall risk assessments using inertial measurement units and local dynamics stability (LDS) have shown that it is possible to identify at-risk persons. However, there are inconsistencies in the literature on how to calculate LDS and how much data is required for a reliable result. This study investigates the reliability and minimum required strides for 6 algorithm-normalization method combinations when computing LDS using young healthy and community dwelling elderly individuals. Participants wore an accelerometer at the lower lumbar while they walked for three minutes up and down a long hallway. This study concluded that the Rosenstein et al. algorithm was successfully and reliably able to differentiate between both populations using only 50 strides. It was also found normalizing the gait time series data by either truncating the data using a fixed number of strides or using a fixed number of strides and normalizing the entire time series to a fixed number of data points performed better when using the Rosenstein et al. algorithm.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 597
Author(s):  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Tanvir Ahmed ◽  
Asif Al Zubayer Swapnil ◽  
Mohammad AssadUzZaman ◽  
...  

The research presents a novel controller designed for robotic systems subject to nonlinear uncertain dynamics and external disturbances. The control scheme is based on the modified super-twisting method, input/output feedback linearization, and time delay approach. In addition, to minimize the chattering phenomenon and ensure fast convergence to the selected sliding surface, a new reaching law has been integrated with the control law. The control scheme aims to provide high performance and enhanced accuracy via limiting the effects brought by the presence of uncertain dynamics. Stability analysis of the closed-loop system was conducted using a powerful Lyapunov function, showing finite time convergence of the system’s errors. Lastly, experiments shaping rehabilitation tasks, as performed by healthy subjects, demonstrated the controller’s efficiency given its uncertain nonlinear dynamics and the external disturbances involved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew M. J. Edwards ◽  
Élfego Ruiz-Gutiérrez ◽  
Michael I. Newton ◽  
Glen McHale ◽  
Gary G. Wells ◽  
...  

AbstractThe breakup of a slender filament of liquid driven by surface tension is a classical fluid dynamics stability problem that is important in many situations where fine droplets are required. When the filament is resting on a flat solid surface which imposes wetting conditions the subtle interplay with the fluid dynamics makes the instability pathways and mode selection difficult to predict. Here, we show how controlling the static and dynamic wetting of a surface can lead to repeatable switching between a toroidal film of an electrically insulating liquid and patterns of droplets of well-defined dimensions confined to a ring geometry. Mode selection between instability pathways to these different final states is achieved by dielectrophoresis forces selectively polarising the dipoles at the solid-liquid interface and so changing both the mobility of the contact line and the partial wetting of the topologically distinct liquid domains. Our results provide insights into the wetting and stability of shaped liquid filaments in simple and complex geometries relevant to applications ranging from printing to digital microfluidic devices.


Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 101
Author(s):  
Alicia Cordero ◽  
Marlon Moscoso-Martínez ◽  
Juan R. Torregrosa

In this paper, we present a new parametric family of three-step iterative for solving nonlinear equations. First, we design a fourth-order triparametric family that, by holding only one of its parameters, we get to accelerate its convergence and finally obtain a sixth-order uniparametric family. With this last family, we study its convergence, its complex dynamics (stability), and its numerical behavior. The parameter spaces and dynamical planes are presented showing the complexity of the family. From the parameter spaces, we have been able to determine different members of the family that have bad convergence properties, as attracting periodic orbits and attracting strange fixed points appear in their dynamical planes. Moreover, this same study has allowed us to detect family members with especially stable behavior and suitable for solving practical problems. Several numerical tests are performed to illustrate the efficiency and stability of the presented family.


10.6036/9828 ◽  
2021 ◽  
Vol 96 (1) ◽  
pp. 214-219
Author(s):  
FRANCISCO JAVIER LÓPEZ LOMBRAÑA ◽  
ANGEL GASPAR GONZALEZ RODRIGUEZ ◽  
ANTONIO GONZALEZ RODRIGUEZ ◽  
DAVID RODRIGUEZ ROSA ◽  
GUILLERMO RUBIO GOMEZ

Purpose: The cost of transport is one of the most important values to the efficiency and operation autonomy of a walking robot. This analysis involves factors as the weight, consumption of the actuators, speeds, accelerations, work surfaces, step cycle model or distance travelled, which must be studied in detail to produce stable and energy-efficient locomotion. This paper presents the results obtained for the cost of transport of a hybrid robot with two front legs and two rear wheels, with a total weight of 50 kg in different scenarios. Methodology/approach - The transportation cost of the proposed hybrid robot is obtained by carrying out a detailed analysis of the kinematics, dynamics, stability and energy consumption. Findings - A satisfactory value of efficiency has been obtained, in terms of cost of transport, owing to a gravitationally decoupled design of the legs. The cost of transport of the robot proposed is between 0.11 and 0.24, depending on the work environment in which it operates, that is, walking on a smooth horizontal plane without additional load. Originality/value – This work presents a new design of a gravitationally decoupled robotic leg by means of a new scheme in which the leg is composed of three four-bar mechanisms that can be synthesized independently. These three mechanisms involve frontal and vertical movement within the same plane of movement. One mechanism generates a horizontal path for tow, while another generates a vertical path and a third has the specific mission of making the tow velocity constant when the corresponding motor is operated at a constant velocity. The overall goal of the mechanisms is to improve robot's efficiency. Key Words: Cost of transport, gravitationally uncoupled motion, energy efficiency, experimental validation, hybrid robot.


Sign in / Sign up

Export Citation Format

Share Document