Analysis of Tire Models for Rolling on a Deformable Substrate

2002 ◽  
Vol 30 (3) ◽  
pp. 180-197 ◽  
Author(s):  
S. Shoop ◽  
I. Darnell ◽  
K. Kestler

Abstract The objective of this research is to produce a finite element model of tire-terrain interaction that can be used to explore the effects of tire and terrain variables on vehicle mobility and terrain deformation. Such a model would need to account for the deformable nature of both the tire and the terrain and be fully three-dimensional. Thus, it is important that the tire model be very efficient at rolling yet retain realistic surface contact and deformation related to contact. A promising methodology was developed by Darnell for efficiently modeling a tire for vehicle dynamics simulations. The performance of the Darnell model was examined with respect to measured tire deformation as well as to conventional models of the same tire. The Darnell tire model was then rolled across a soil simulating the sand used in off-road vehicle experiments. The combined tire-terrain model presented is fully operational, but optimization and validation are in progress.


1997 ◽  
Vol 25 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ian Darnell ◽  
Gregory M. Hulbert ◽  
Cedric w. mousseau


Author(s):  
Y. P. Chang ◽  
M. El-Gindy

A full nonlinear finite element P185/70R14 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum. The virtual tire/drum/cleat finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. In addition to the tire model itself, the rim was also included and rotated with the tire, with proper mass and rotational inertial effects. The FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this P185/70R14 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. Also the paper presents the prediction of tire standing waves phenomenon, and computer animations of the standing waves phenomenon were carried out for the first time. The effects of different tire inflation pressures and tire axle loadings were investigated with respect to their influences on the formation of standing waves. The parameters adopted in this FEA tire model were validated against experimental work and showed excellent agreement.



Author(s):  
R Ansari ◽  
S Rouhi

A three-dimensional finite element model has been used here to study the vibrational behavior of silicon carbide nanosheets and nanotubes. The bonds of hexagonal lattices of SiC nanosheets have been modeled by structural beam elements, and at the corners, mass elements are placed instead of Si and C atoms. Moreover, molecular dynamics simulations are performed to verify the finite element model. Comparing the results of finite element model and molecular dynamics simulations, it is concluded that the utilized approach can predict the results of molecular dynamics simulations with a reasonable accuracy. It is observed that the atomic structure does not significantly affect the vibrational behavior of nanosheets. Besides, increasing the size of nanosheet results in decreasing the effect of geometry variation. As the aspect ratio of nanotubes increases, the effects of boundary conditions and length diminish so that the frequency envelopes tend to converge.



1998 ◽  
Vol 26 (3) ◽  
pp. 149-172 ◽  
Author(s):  
Y. Zhang ◽  
T. Palmer ◽  
A. Farahani

Abstract A complete finite element tire model was developed for the purposes of vehicle dynamics analyses and full vehicle finite element model real time proving ground simulations. The tire model was validated through simulations of some of the very important global, static and dynamic mechanical properties such as the tire radial and lateral stiffnesses, free-drop test, and low-speed rolling cornering stiffness. The three-dimensional free vibration and harmonic/randomly forced vibrations with ground contact of the tire model were studied here. One of the main purposes for the present study is to provide a new approach toward tire and vehicle NVH studies. All the analyses were nonconventional in the sense that, instead of NASTRAN-type modal analysis, the explicit nonlinear dynamic finite element code LS/DYNA3D was used to conduct all the analyses in the time domain, and the vibration modes were decomposed via fast fourier transformation.



1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.



2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.



2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.



Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.



1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.



Sign in / Sign up

Export Citation Format

Share Document