Assessing High-Resolution Weather Research and Forecasting (WRF) Forecasts Using an Object-Based Diagnostic Evaluation

2014 ◽  
Author(s):  
Gail Vaucher ◽  
John Raby
Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761 ◽  
Author(s):  
Theodoros Katopodis ◽  
Iason Markantonis ◽  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos

In the context of climate change and growing energy demand, solar technologies are considered promising solutions to mitigate Greenhouse Gas (GHG) emissions and support sustainable adaptation. In Greece, solar power is the second major renewable energy, constituting an increasingly important component of the future low-carbon energy portfolio. In this work, we propose the use of a high-resolution regional climate model (Weather Research and Forecasting model, WRF) to generate a solar climate atlas for the near-term climatological future under the Representative Concentration Pathway (RCPs) 4.5 and 8.5 scenarios. The model is set up with a 5 × 5 km2 spatial resolution, forced by the ERA-INTERIM for the historic (1980–2004) period and by the EC-EARTH General Circulation Models (GCM) for the future (2020–2044). Results reaffirm the high quality of solar energy potential in Greece and highlight the ability of the WRF model to produce a highly reliable future climate solar atlas. Projected changes between the annual historic and future RCPs scenarios indicate changes of the annual Global Horizontal Irradiance (GHI) in the range of ±5.0%. Seasonal analysis of the GHI values indicates percentage changes in the range of ±12% for both scenarios, with winter exhibiting the highest seasonal increases in the order of 10%, and autumn the largest decreases. Clear-sky fraction fclear projects increases in the range of ±4.0% in eastern and north continental Greece in the future, while most of the Greek marine areas might expect above 220 clear-sky days per year.


Author(s):  
Alan Mandal ◽  
Grzegorz Nykiel ◽  
Tomasz Strzyzewski ◽  
Adam Kochanski ◽  
Weronika Wrońska ◽  
...  

2018 ◽  
Vol 33 (6) ◽  
pp. 1605-1616 ◽  
Author(s):  
Ji-Young Han ◽  
Song-You Hong

Abstract In the Weather Research and Forecasting (WRF) community, a standard model setup at a grid size smaller than 5 km excludes cumulus parameterization (CP), although it is unclear how to determine a cutoff grid size where convection permitting can be assumed adequate. Also, efforts to improve high-resolution precipitation forecasts in the range of 1–10 km (the so-called gray zone for parameterized precipitation physics) have recently been made. In this study, we attempt to statistically evaluate the skill of a gray-zone CP with a focus on the quantitative precipitation forecast (QPF) in the summertime. A WRF Model simulation with the gray-zone simplified Arakawa–Schubert (GSAS) CP at 3-km spatial resolution over East Asia is evaluated for the summer of 2013 and compared with the results from a conventional setup without CP. A statistical evaluation of the 3-month simulations shows that the GSAS demonstrates a typical distribution of the QPF skill, with high (low) scores and bias in the light (heavy) precipitation category. The WRF without CP seriously suppresses light precipitation events, but its skill for heavier categories is better. Meanwhile, a new set of precipitation data, which is simply averaged precipitation from the two simulations, demonstrates the best skill in all precipitation categories. Bearing in mind that high-resolution QPF requires essential challenges in model components, along with complexity in precipitating convection mechanisms over geographically different regions, this proposed method can serve as an alternative for improving the QPF for practical usage.


Sign in / Sign up

Export Citation Format

Share Document