Asia-Pacific Journal of Atmospheric Sciences
Latest Publications


TOTAL DOCUMENTS

603
(FIVE YEARS 177)

H-INDEX

24
(FIVE YEARS 6)

Published By Springer-Verlag

1976-7951, 1976-7633

Author(s):  
Yonghua Zhu ◽  
Yongqing Wang ◽  
Zhiqun Hu ◽  
Fansen Xu ◽  
Renqiang Liu

Author(s):  
Yu-Tai Pan ◽  
Ming-Jen Yang

AbstractOn 19 April 2019, a mature squall-line mesoscale convective system (MCS) with the characteristics of a leading convective line and trailing stratiform landed on Taiwan, resulting in strong gust wind and heavy rainfall. This squall-line MCS became asymmetric after landfall on Taiwan. Two sets of idealized numerical simulations (mountain heights and low-level vertical wind shear) using the Weather Research and Forecasting (WRF) model were conducted to examine the impacts of realistic Taiwan topography on a squall-line MCS. Results showed numerous similarities between the idealized simulations and real-case observations. The low-level Froude number which considered the terrain height (Fmt) was calculated to examine the blocking effect of the Taiwan terrain, and the cold pool (determined by − 1.5 K isotherm) was found to be completely blocked by the 500-m height contour. The northeast-southwest orientation of the Snow Mountain Range (SMR), and the north–south orientation of the Central Mountain Range (CMR) led to the upwind side asymmetry. On the other hand, the lee-side asymmetry was associated with different intensities and occurrence locations of the hydraulic jump between the SMR and southern CMR, and the cold-pool Froude number (Fcp) indicated the flow-regime transition from subcritical to supercritical.


Author(s):  
Siyu Zhao ◽  
Jiaying Zhang ◽  
Yi Deng ◽  
Na Wang

Abstract The past four decades have seen an increase of terrestrial hot extremes during summer in the northern extratropics, accompanied by the Northern Hemisphere (NH) sea surface temperature (SST) warming (mainly over 10°–70°N, 0°–360°) and CO2 concentration rising. This study aims to understand possible causes for the increasing hot extremes, which are defined on a daily basis. We conduct a series of numerical experiments using the Community Atmosphere Model version 5 model for two periods, 1979–1995 and 2002–2018. The experiment by changing the CO2 concentration only with the climatological SST shows less increase of hot extremes days than that observed, whereas that by changing the NH SST (over 10°–70°N, 0°–360°) with constant CO2 concentration strengthens the hot extremes change over mid-latitudes. The experiment with both SST and CO2 concentration changes shows hot extremes change closer to the observation compared to the single-change experiments, as well as more similar simulations of atmospheric circulations and feedbacks from cloud and radiative processes. Also discussed are roles of natural variability (e.g., Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation) and other factors (e.g., Arctic sea ice and tropical SST).


Author(s):  
Hyomee Lee ◽  
Byung-Kwon Moon ◽  
Hyun-Chae Jung ◽  
Jong-Yeon Park ◽  
Sungbo Shim ◽  
...  

AbstractEarth system models (ESMs) comprise various Earth system components and simulate the interactions between these components. ESMs can be used to understand climate feedbacks between physical, chemical, and biological processes and predict future climate. We developed a new ESM, UKESM-TOPAZ, by coupling the UK ESM (UKESM1) and the Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) biogeochemical module. We then compared the preliminary simulated biogeochemical variables, which were conducted over a period of 70 years, using observational and existing UKESM1 model data. Similar to UKESM1, the newly developed UKESM-TOPAZ closely simulated the relationship between the El Niño-Southern Oscillation and chlorophyll concentration anomalies during the boreal winter. However, there were differences in the chlorophyll distributions in the eastern equatorial Pacific between the two models, which were due to dissolved iron, as this value was higher in UKESM-TOPAZ than in UKESM1. In a mean field analysis, the distributions of the major marine biogeochemical variables in UKESM-TOPAZ (i.e., nitrate, silicate, dissolved oxygen, dissolved inorganic carbon, and alkalinity) were not significantly different from those of UKESM1, likely because the models share the same initial conditions. Our results indicate that TOPAZ has a simulation performance that does not lag behind UKESM1’s basic biogeochemical model (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration, and Acidification; MEDUSA). The UKESM-TOPAZ model can simulate the variability of the observed Niño 3.4 and 4 indices more closely than UKESM1. Thus, the UKESM-TOPAZ model can be used to deepen our understanding of the Earth system and to estimate ESM uncertainty.


Author(s):  
Ije Hur ◽  
Minju Kim ◽  
Kyungmin Kwak ◽  
Hyun Min Sung ◽  
Young-Hwa Byun ◽  
...  

AbstractHadley circulation (HC) is a planetary-scale overturning circulation in the tropics that transports momentum, heat, and moisture poleward. In this study, we evaluate the strength and extent of the HC in the historical and future climate simulations of the Korean Meteorological Administration (KMA) Advanced Community Earth system model (K-ACE), which was recently developed by the National Institute of Meteorological Sciences of Korea. Compared with a reanalysis product, the overall structure of the HC is reasonably reproduced by the K-ACE. At the same time, it is also found that the Northern Hemisphere HC in the K-ACE is shifted southward by a few degrees, while the strength of the Southern Hemisphere (SH) HC is under-represented by approximately 20%. These biases in the strength and extent of the HC can be explained by biases in the eddy momentum flux and precipitation in the tropics. In the future climate simulations under the Shared Socioeconomic Pathway 5-Representative Concentration Pathway 8.5 scenario, the HCs in the K-ACE show a weakening and widening trend in both hemispheres, which is consistent with the projections of many Coupled Model Intercomparison Project Phase 6 models. A notable feature of the K-ACE is the widening of the SH HC, which takes place at a rate that is about double the multi-model mean. Climate models that share the component models with the K-ACE, such as UKESM, HadGEM3-GC31-LL, and ACCESS-CM2/ESM1, also show enhanced poleward expansion of the HC in the SH. This strong expansion is shown to be dominated by the expansion of the regional HC over the Pacific.


Author(s):  
Minsang Kim ◽  
Jun-Hyung Heo ◽  
Eun-Ha Sohn

AbstractThis study aims for producing high-quality true-color red-green-blue (RGB) imagery that is useful for interpreting various environmental phenomena, particularly for GK2A. Here we deal with an issue that general atmospheric correction methods for RGB imagery might be breakdown at high solar/viewing zenith angle of GK2A due to erroneous atmospheric path lengths. Additionally, there is another issue about the green band of GK2A of which centroid wavelength (510 nm) is different from that of natural green band (555 nm), resulting in the unrealistic RGB imagery. To overcome those weakness of the RGB imagery for GK2A, we apply the second simulation of the satellite signal in the solar spectrum radiative transfer model look-up table with improved information considering altitude of the reflective surface to reduce the exaggerated atmospheric correction, and a blending technique that mixed the true-color imagery before and after atmospheric correction which produced a naturally expressed true-color image. Consequently, the root mean square error decreased by 0.1–0.5 in accordance with the solar and view zenith angles. The green band signal was modified by combining it with a veggie band to form hybrid green which adjust centroid wavelength of approximately 550 nm. The original composite of true-color RGB imagery is dark; therefore, to brighten the imagery, histogram equalization is conducted to flatten the color distribution. High-temporal-resolution true-color imagery from the GK2A AMI have significant potential to provide scientists and forecasters as a tools to visualize the changing Earth and also expected to intuitively understand the atmospheric phenomenon to the general public.


Sign in / Sign up

Export Citation Format

Share Document