scholarly journals Die Konsequenzen der zeitspezifischen Deletion von Neuroligin 2 für die synaptische Übertragung, Plastizität und neuronale Exzitabilität im Gyrus Dentatus von adulten Mäusen

2021 ◽  
Author(s):  
◽  
Franziska Frank

Eines der übergeordneten Ziele neurowissenschaftlicher Grundlagenforschung ist es, die Pathomechanismen neuropsychiatrischer Erkrankungsbilder besser zu verstehen. Als Erklärungsmodell für einige dieser Erkrankungen dient unter anderem ein gestörtes Verhältnis zwischen Exzitation und Inhibition im Gehirn. Synaptische Strukturproteine sind wichtige Modulatoren dieses Verhältnisses. Für eine unbeeinträchtigte inhibitorische synaptische Transmission spielt das postsynaptische Zelladhäsionsprotein Neuroligin 2 eine maßgebliche Rolle, um das Gleichgewicht zwischen Exzitation und Inhibition aufrechtzuerhalten. Neuroligin 2 ist an der inhibitorischen Synapse lokalisiert und beeinflusst die Entwicklung, Reifung und Funktion dieser Synapse. Die klinische Relevanz von Neuroligin 2 wurde bereits bei zahlreichen Erkrankungsbildern wie Schizophrenie, Depression oder Epilepsie im Rahmen von Studien nachgewiesen. Um das Verhältnis zwischen Exzitation und Inhibition in vivo sowie Mechanismen der synaptischen Übertragung und Plastizität zu untersuchen, hat sich die Ableitung von Feldpotentialen im Gyrus Dentatus des Hippocampus etabliert. Im Neuroligin 2 Knockout Mausmodell konnte bereits gezeigt werden, dass eine pränatale Deletion dieses Proteins eine stark erhöhte Erregbarkeit der Körnerzellen und eine verminderte GABAerge Netzwerkinhibition im Gyrus Dentatus in vivo zur Folge hat. Unklar blieb bisher, ob diese durch den konventionellen Neuroligin 2 Knockout (pränatal) hervorgerufenen Netzwerkveränderungen alleine auf das Fehlen dieses Proteins zurückzuführen sind oder durch eine zusätzliche Beeinträchtigung der Hirnentwicklung hervorgerufen werden. Ziel dieser Dissertation ist es deshalb, die Rolle von Neuroligin 2 im Gyrus Dentatus durch einen induzierten Knockout in adulten Mäusen (postnatal) unabhängig von einem möglichen Entwicklungseffekt zu klären. Dazu wurde im ersten methodischen Schritt dieser Dissertation durch orale Tamoxifen-Gabe eine zeitspezifische konditionale Eliminierung von Neuroligin 2 in genetisch modifizierten, adulten Mäusen erzielt. Im Anschluss an diese konditionale Eliminierung wurde die synaptische Transmission, Plastizität sowie neuronale Erregbarkeit von Körnerzellen im Gyrus Dentatus mittels elektrophysiologischer Experimente untersucht. Hierzu wurde zunächst der Tractus Perforans und die Körnerzellschicht durch stereotaktische Chirurgie in anästhesierten Mäusen lokalisiert. Anschließend wurde eine Stimulation des Tractus Perforans sowie eine Ableitung von Feldpotentialen im Gyrus Dentatus durchgeführt. Um die Erregbarkeit der Körnerzellen, die synaptische Transmission, Kurz- und Langzeitplastizität sowie Netzwerkinhibition im Gyrus Dentatus zu analysieren, wurden unterschiedliche Stimulationsprotokolle verwendet. Im Anschluss an die elektrophysiologischen Experimente wurden die Hippocampi beidseitig entnommen, konserviert und später einer Proteinquantifizierung von Neuroligin 2 mittels Western-Blotting unterzogen. Die Ergebnisse zeigten ein signifikant verringertes Proteinlevel von Neuroligin 2 auf 41,07% im Hippocampus von konditionalen Neuroligin 2 Knockout Mäusen. Unter dieser Reduktion von Neuroligin 2 in adulten Mäusen war die in vivo Erregbarkeit der Körnerzellen des Gyrus Dentatus sowie GABAerge Netzwerkinhibition weitgehend unbeeinträchtigt und die signifikanten Beobachtungen des konventionellen Knockout Modells ließen sich nicht reproduzieren. Aufgrund der unvollständigen Proteinreduktion lässt sich jedoch nicht abschließend beurteilen, ob die Restmenge den elektrophysiologischen Effekt kompensiert oder ob die im konventionellen Neuroligin 2 Knockout Modell beobachteten Effekte auf eine ausschließliche Rolle von Neuroligin 2 in der Hirnentwicklungsperiode zurückzuführen sind. Kürzlich veröffentlichte Daten zeigten allerdings, dass die postnatale Deletion von Neuroligin 2 in anderen Hirnregionen zu einer verminderten Netzwerkinhibition führt. Neben der hier verwendeten in vivo Methodik ist eine Ergänzung von Untersuchungen in nicht-anästhesierten Tieren sowie Messungen einzelner Zellen durch whole-cell patch-clamp Untersuchungen in vitro oder in vivo zu erwägen. Es sollte dabei auf eine konditionale Proteineliminierung geachtet werden, damit mögliche Kompensationsmechanismen weitgehend ausgeschlossen werden können. Eine weiterführende immunhistochemische Bildgebung der Hippocampuspräparate, wie sie im konventionellen Knockout durchgeführt wurde, könnte sich hierbei ebenso als aufschlussreich für die Funktion von Neuroligin 2 im Hippocampus des adulten Tieres erweisen.

2019 ◽  
Author(s):  
Jean-Sébastien Jouhanneau ◽  
James F.A. Poulet

AbstractAlthough we know a great deal about monosynaptic connectivity, transmission and integration in the mammalian nervous system from in vitro studies, very little is known in vivo. This is partly because it is technically difficult to evoke action potentials and simultaneously record small amplitude subthreshold responses in closely (< 150 µm) located pairs of neurons. To address this, we have developed in vivo two-photon targeted multiple (2 – 4) whole-cell patch clamp recordings of nearby neurons in superficial cortical layers 1 to 3. Here we describe a step-by-step guide to this approach in the anesthetised mouse primary somatosensory cortex, including: the design of the setup, surgery, preparation of pipettes, targeting and acquisition of multiple whole-cell recordings, as well as in vivo and post-hoc histology. The procedure takes ∼ 4 hours from start of surgery to end of recording and allows examinations both into the electrophysiological features of unitary excitatory and inhibitory monosynaptic inputs during different brain states as well as the synaptic mechanisms of correlated neuronal activity.


2009 ◽  
Vol 102 (1) ◽  
pp. 590-597 ◽  
Author(s):  
Jason Dyck ◽  
Simon Gosgnach

The in vitro whole spinal cord preparation has been an invaluable tool for the study of the neural network that underlies walking because it provides a means of recording fictive locomotor activity following surgical and/or pharmacological manipulation. The recent use of molecular genetic techniques to identify discrete neuronal populations in the spinal cord and subsequent studies showing some of these populations to be involved in locomotor activity have been exciting developments that may lead to a better understanding of the structure and mechanism of function of this neural network. It would be of great benefit if the in vitro whole spinal cord preparation could be updated to allow for the direct targeting of genetically defined neuronal populations, allowing each to be characterized physiologically and anatomically. This report describes a new technique that enables the visualization of, and targeted whole cell patch-clamp recordings from, genetically defined populations of neurons while leaving connectivity largely intact. The key feature of this technique is a small notch cut in the lumbar spinal cord that reveals cells located in the intermediate laminae while leaving the ventral portion of the spinal cord—the region containing the locomotor neural network—untouched. Whole cell patch-clamp recordings demonstrate that these neurons are healthy and display large rhythmic depolarizations that are related to electroneurogram bursts recorded from ventral roots during fictive locomotion. Intracellular labeling demonstrates that this technique can also be used to map axonal projection patterns of neurons. We expect that this procedure will greatly facilitate electrophysiological and anatomical study of important neuronal populations that constitute neural networks throughout the CNS.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e46360 ◽  
Author(s):  
Paolo Bazzigaluppi ◽  
Tom Ruigrok ◽  
Payam Saisan ◽  
Chris I. De Zeeuw ◽  
Marcel de Jeu

Neuron ◽  
2017 ◽  
Vol 95 (5) ◽  
pp. 1048-1055.e3 ◽  
Author(s):  
Luca A. Annecchino ◽  
Alexander R. Morris ◽  
Caroline S. Copeland ◽  
Oshiorenoya E. Agabi ◽  
Paul Chadderton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document