in vivo optical imaging
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 18)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Deep Hathi ◽  
Chantiya Chanswangphuwana ◽  
Nicholas Cho ◽  
Francesca Fontana ◽  
Dolonchampa Maji ◽  
...  

AbstractMultiple myeloma (MM) is a cancer of bone marrow (BM) plasma cells, which is increasingly treatable but still incurable. In 90% of MM patients, severe osteolysis results from pathological interactions between MM cells and the bone microenvironment. Delineating specific molecules and pathways for their role in cancer supportive interactions in the BM is vital for developing new therapies. Very Late Antigen 4 (VLA4, integrin α4β1) is a key player in cell–cell adhesion and signaling between MM and BM cells. We evaluated a VLA4 selective near infrared fluorescent probe, LLP2A-Cy5, for in vitro and in vivo optical imaging of VLA4. Furthermore, two VLA4-null murine 5TGM1 MM cell (KO) clones were generated by CRISPR/Cas9 knockout of the Itga4 (α4) subunit, which induced significant alterations in the transcriptome. In contrast to the VLA4+ 5TGM1 parental cells, C57Bl/KaLwRij immunocompetent syngeneic mice inoculated with the VLA4-null clones showed prolonged survival, reduced medullary disease, and increased extramedullary disease burden. The KO tumor foci showed significantly reduced uptake of LLP2A-Cy5, confirming in vivo specificity of this imaging agent. This work provides new insights into the pathogenic role of VLA4 in MM, and evaluates an optical tool to measure its expression in preclinical models.


2021 ◽  
pp. 105167
Author(s):  
Yong Dae Park ◽  
Mayank Kinger ◽  
Changho Min ◽  
Sang Yeob Lee ◽  
Youngjoo Byun ◽  
...  

2021 ◽  
Author(s):  
Ryohei Saito-Moriya ◽  
Rika Obata ◽  
Shojiro A. Maki

The firefly bioluminescence reaction has been exploited for in vivo optical imaging in life sciences. To develop highly sensitive bioluminescence imaging technology, many researchers have synthesized luciferin analogs and luciferase mutants. This chapter first discusses synthetic luciferin analogs and their structure–activity relationships at the luminescence wavelength of the firefly bioluminescence reaction. We then discuss the development of luciferin analogs that produce near-infrared (NIR) light. Since NIR light is highly permeable for biological tissues, NIR luciferin analogs might sensitively detect signals from deep biological tissues such as the brain and lungs. Finally, we introduce two NIR luciferin analogs (TokeOni and seMpai) and a newly developed bioluminescence imaging system (AkaBLI). TokeOni can detect single-cell signals in mouse tissue and luminescence signals from marmoset brain, whereas seMpai can detect breast cancer micro-metastasis. Both reagents are valid for in vivo bioluminescence imaging with high sensitivity.


Author(s):  
Andrée-Anne Berthiaume ◽  
Vanessa Coelho-Santos ◽  
David A. Hartmann ◽  
Andy Y. Shih

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcello Panagia ◽  
Jing Yang ◽  
Eric Gale ◽  
Huan Wang ◽  
Ivan Luptak ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
pp. 2390
Author(s):  
Masamichi Shinoda ◽  
Satoshi Fujita ◽  
Shiori Sugawara ◽  
Sayaka Asano ◽  
Ryo Koyama ◽  
...  

We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects of SCS and intraperitoneal minocycline administration on plantar mechanical sensitivity, microglial activation, and neuronal excitability in the L4 dorsal horn were assessed on day 3 after SNI. The somatosensory cortical responses to electrical stimulation of the hind paw on day 3 following SNI were examined by using in vivo optical imaging with a voltage-sensitive dye. On day 3 after SNI, plantar mechanical hypersensitivity and enhanced microglial activation were suppressed by minocycline or SCS, and L4 dorsal horn nociceptive neuronal hyperexcitability was suppressed by SCS. In vivo optical imaging also revealed that electrical stimulation of the hind paw-activated areas in the somatosensory cortex was decreased by SCS. The present findings suggest that SCS could suppress plantar SNI-induced neuropathic pain via inhibition of microglial activation in the L4 dorsal horn, which is involved in spinal neuronal hyperexcitability. SCS is likely to be a potential alternative and complementary medicine therapy to alleviate neuropathic pain following nerve injury.


2020 ◽  
Vol 225 (2) ◽  
pp. 467-480 ◽  
Author(s):  
Christian R. Lee ◽  
Laleh Najafizadeh ◽  
David J. Margolis

Sign in / Sign up

Export Citation Format

Share Document