scholarly journals Ascorbic Acid Oxidase Activity in Apple Buds: Relation to Thidiazuron-induced Lateral Budbreak

HortScience ◽  
1992 ◽  
Vol 27 (10) ◽  
pp. 1102-1105 ◽  
Author(s):  
Shiow Y. Wang ◽  
Miklos Faust

The activity of ascorbic acid oxidase (AAO) was studied in apple (Malus domestica Borkh.) buds during dormancy and thidiazuron-induced budbreak. In dormant buds, activity of AAO was low compared with buds that were treated with thidiazuron and had resumed growth. An increase in AAO activity began at the time of metabolic transition from dormancy to budbreak. The highest level of activity was reached 10 days after thidiazuron induction during the expansion growth phase. In vitro AAO activity of apple bud extract was increased by addition of Cu (CuSO) and inhibited by Cu-chelating agents, diethyldithiocarbamate (DDC), sodium azide (NaN), and 8-hydroxyquinoiine (8-OH-Q). In vivo treatment of apple buds with Cu-chelating agents inhibited AAO activity and bud growth but not budbreak. Chemical name used: N- phenyl -N' -1,2,3-thidiazol-5-ylurea (thidiazuron).

1986 ◽  
Vol 41 (3) ◽  
pp. 355-358 ◽  
Author(s):  
V. S. Ghole ◽  
P. S. Damle ◽  
W. H.-P. Thiemann

A homogeneous magnetic field of 1.1 T strength exhibits a significant influence on the activity of the enzyme ascorbic acid oxidase in vitro. A Lineweaver-Burk plot of the reaction shows the typical pattern of a mixed-type inhibition, i.e. a larger rate of reaction at low substrate concentrations and a smaller rate of reaction at high substrate concentration than that of the control without magnetic field applied.


1993 ◽  
Vol 48 (9-10) ◽  
pp. 766-772 ◽  
Author(s):  
Hartmut B. Stegmann ◽  
Paul Schuler

Abstract Treatment of leaves of spinach, corn, and peas with the herbicides paraquat, amitrole or acifluorfen leads to oxidative stress resulting in a light driven drastically increased production of ascorbic acid radical (m̱onoḏehydroa̱scorbic acid, MDAA) which could be demonstrated by in vivo EPR analysis. A discrimination of the MDAA formation between the action of elec­tron uncouplers and catalase inhibitors can be achieved by observation of the radical rise kinetics. Significant MDAA signal intensities are detected in the darkness likewise. These signals are probably due to the action of ascorbic acid oxidase activated by membrane destruction.


Diabetes ◽  
1989 ◽  
Vol 38 (8) ◽  
pp. 1036-1041 ◽  
Author(s):  
J. A. Vinson ◽  
M. E. Staretz ◽  
P. Bose ◽  
H. M. Kassm ◽  
B. S. Basalyga
Keyword(s):  

1962 ◽  
Vol 237 (11) ◽  
pp. 3455-3457
Author(s):  
Anatol G. Morell ◽  
Philip Aisen ◽  
I. Herbert Scheinberg

1963 ◽  
Vol 204 (1) ◽  
pp. 171-175 ◽  
Author(s):  
W. S. Ruliffson ◽  
J. M. Hopping

The effects in rats, of age, iron-deficiency anemia, and ascorbic acid, citrate, fluoride, and ethylenediaminetetraacetate (EDTA) on enteric radioiron transport were studied in vitro by an everted gut-sac technique. Sacs from young animals transported more than those from older ones. Proximal jejunal sacs from anemic animals transported more than similar sacs from nonanemic rats, but the reverse effect appeared in sacs formed from proximal duodenum. When added to media containing ascorbic acid or citrate, fluoride depressed transport as did anaerobic incubation in the presence of ascorbic acid. Anaerobic incubation in the presence of EDTA appeared to permit elevated transport. Ascorbic acid, citrate, and EDTA all enhanced the level of Fe59 appearing in serosal media. These results appear to agree with previously established in vivo phenomena and tend to validate the in vitro method as one of promise for further studies of factors affecting iron absorption and of the mechanism of iron absorption.


1982 ◽  
Vol 60 (3) ◽  
pp. 389-397 ◽  
Author(s):  
Zbyszko F. Grzelczak ◽  
Mark H. Sattolo ◽  
Linda K. Hanley-Bowdoin ◽  
Theresa D. Kennedy ◽  
Byron G. Lane

The most prominent methionine-labeled protein made when cell-free systems are programmed with bulk mRNA from dry wheat embryos has been identified with what may be the most abundant protein in dry wheat embryos. The protein has been brought to purity and has a distinctive amino acid composition, Gly and Glx accounting for almost 40% of the total amino acids. Designated E because of its conspicuous association with early imbibition of dry wheat embryos, the protein and its mRNA are abundant during the "early" phase (0–1 h) of postimbibition development, and easily detected during "lag" phase (1–5 h), but they are almost totally degraded soon after entry into the "growth" phase of development, by about 10 h postimbibition.The most prominent methionine-labeled protein peculiar to the cell-free translational capacity of bulk mRNA from "growth" phase embryos is not detected as a product of in vivo synthesis. Its electrophoretic properties and its time course of emergence, after 5 h postimbibition development, suggest that this major product of cell-free synthesis may be an in vitro counterpart to a prominent methionine-labeled protein made only in vivo, by "growth" phase embryos. Designated G because of its conspicuous association with "growth" phase development, the cell-free product does not comigrate with any prominent dye-stained band in electrophoretic distributions of wheat proteins. The suspected cellular counterpart to G, also, does not comigrate with a prominent dye-stained wheat protein during electrophoresis, and although found in particulate as well as soluble fractions of wheat embryo homogenates it is not concentrated in either nuclei or mitochondria, as isolated.


Sign in / Sign up

Export Citation Format

Share Document