scholarly journals Interspecific Hybridization Processes between Michelia yunnanensis and M. crassipes and Embryogenesis of the Heterozygote

HortScience ◽  
2017 ◽  
Vol 52 (8) ◽  
pp. 1043-1047
Author(s):  
Haiyan Xu ◽  
Folian Li ◽  
Yuezhi Pan ◽  
Xun Gong

The investigation of hybridization processes and embryogenesis of heterozygote is an effective approach for early hybrids’ identification, which could provide reliable information for successful crossbreeding. In this study, we reported the whole hybridization processes of the direct cross and reciprocal cross between Michelia yunnanensis Franch. ex Finet et Gagnep. and Michelia crassipes Law using fluorescence microscopy after aniline blue staining, with the pollen germination on stigmas, pollen tube growth in styles, and subsequent extension into the embryo sac as well as the double fertilization processes are documented in detail. The M. yunnanensis × M. crassipes combination displayed considerable cross-compatibility, and the heterozygote embryogenesis was further observed with an approach of modified cryosectioning technique. Besides, the whole formation processes of hybrid seeds from artificial pollination to maturation were successfully observed. However, in the reciprocal cross, we found incompatibility between pollen grains of M. yunnanensis and stigmas of M. crassipes for the reason of hysteretic identification, as well as the abnormal callose deposition which belongs to the prefertilization barriers. This is the first study in which the complete and clear hybridization processes in Michelia were reported. We inferred that unilateral incompatibility of M. crassipes detected in this study may also exist in some other Michelia species. In artificial hybridization practices, we suggest some special treatments for overcoming prefertilization barrier should be taken when treating M. crassipes as the maternal parent.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fan Wang ◽  
Feng-Jiao Zhang ◽  
Fa-Di Chen ◽  
Wei-Min Fang ◽  
Nian-Jun Teng

There has been a heated argument over self-incompatibilityof chrysanthemum (Chrysanthemum morifolium) among chrysanthemum breeders. In order to solve the argument, we investigated pistil receptivity, seed set, and compatible index of 24 chrysanthemum cultivars. It was found that the 24 cultivars averagely had 3.7–36.3 pollen grains germinating on stigmas at 24 hours after self-pollination through the fluorescence microscope using aniline blue staining method. However, only 10 of them produced self-pollinated seeds, and their seed sets and compatible indexes were 0.03–56.50% and 0.04–87.50, respectively. The cultivar “Q10-33-1” had the highest seed set (56.50%) and compatible index (87.50), but ten of its progeny had a wide range of separation in seed set (0–37.23%) and compatible index (0–68.65). The results indicated that most of chrysanthemum cultivars were self-incompatible, while a small proportion of cultivars were self-compatible. In addition, there is a comprehensive separation of self-incompatibility among progeny from the same self-pollinated self-compatible chrysanthemum cultivar. Therefore, it is better to emasculate inflorescences during chrysanthemum hybridization breeding when no information concerning its self-incompatibility characteristics is available. However, if it is self-incompatible and propagated by vegetative methods, it is unnecessary to carry out emasculation when it is used as a female plant during hybridization breeding.


1969 ◽  
Vol 17 (2) ◽  
pp. 215 ◽  
Author(s):  
N Prakash

In Darwinia the floral parts are differentiated in a "calyx-orolla-gynoeciumandroecium" sequence. In individual buds stages of microsporogenesis markedly precede corresponding stages of megasporogenesis. The anther is tetrasporangiate with all sporangia lying in one plane. The secretory tapetum is one- to three-layered within the same microsporangium and a large number of Ubisch bodies are formed. The anthers dehisce by minute lateral pores and an ingenious mechanism helps disperse the twocelled pollen grains. A basal placenta in the single loculus of the ovary bears four ovules in D. micropetala and two in D. fascicularis. In both species, however, only one ovule is functional after fertilization. The fully grown ovules are anatropous, crassinucellar, and bitegmic; the inner integument forms the micropyle. The parietal tissue is most massive at the completion of megasporogenesis but is progressively destroyed later. The embryo sac follows the Polygonum type of developnlent and when mature is five-nucleate, the three antipodals being ephemeral. Following fertilization, the primary endosperm nucleus divides before the zygote. Subsequent nuclear divisions in the endosperm mother cell are synchronous and lead to a free-nuclear endosperm which becomes secondarily cellular, starting from the micropylar end at the time the globular embryo assumes an elongated shape. Embryogeny is irregular and the mature embryo is straight with a massive radicle and a hypocotyl which terminates in two barely recognizable cotyledons. Sometimes the minute cotyledons are borne on a narrow neck-like extension of the hypocotyl. A suspensor is absent. Both integuments are represented in the seed coat and only the outer layer of the outer and the inner layer of the inner integuments, with their thick-walled tanniniferous cells, remain in the fully grown seed. The ovary wall is demarcated into an outer zone containing oil glands surrounded by cells containing a tannin-like substance and an inner zone of spongy parenchyma. In the fruit this spongy zone breaks down completely but the outer zone is retained. The two species of Darwinia, while closely resembling each other in their embryology, differ significantly from other Myrtaceae. However, no taxonomic conclusions are drawn at this stage, pending enquiry into the life history of other members of the tribe Chamaelaucieae.


1962 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
GL Davis

Cotula australis has a discoid heterogamous capitulum in which the outermost three whorls of florets are female and naked. The bisexual disk florets are fully fertile and have a four-lobed corolla with four shortly epipetalous stamens. The anthers contain only two microsporangia. Wall formation and microsporogenesis are described and the pollen grains are shed at the three-celled condition. The ovule is teguinucellate and the hypodermal archesporial cell develops directly as the megaspore mother cell. Megasporogenesis is normal and the monosporio embryo sac develops from the chalazal megaspore. Breakdown of the nucellar epidermis takes place when the embryo sac is binucleate and its subsequent development follows the Polygonum type. The synergids extend deeply into the micropyle and one persists until late in embryogeny as a haustorium. The development of the embryo is of the Asterad type, and the endosperm is cellular. C. coronopifolia agrees with C. australis in the presence of only two microsporangia in each anther and the development of a synergid haustorium.


2013 ◽  
Vol 40 (1) ◽  
pp. 23 ◽  
Author(s):  
Hee-Sun Kim ◽  
Moon Joo Kang ◽  
Sung Ah Kim ◽  
Sun Kyung Oh ◽  
Hoon Kim ◽  
...  

2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Heiko Braak ◽  
Simone Feldengut ◽  
Jan Kassubek ◽  
Deniz Yilmazer-Hanke ◽  
Kelly Del Tredici

Cortical microinfarcts are the most widespread form of brain infarction but frequently remain undetected by standard neuroimaging protocols. Moreover, microinfarcts are only partially detectable in hematoxylin-eosin-stained (H and E) 4-10 µm paraffin sections at routine neuropathological examination. In this short report, we provide two staining protocols for visualizing cortical microinfarcts in 100-300 µm sections. For low-power microscopy, the first protocol combines aldehyde fuchsine staining for detection of lipofuscin granules and macrophages with Darrow red counterstaining for Nissl material. The second protocol combines collagen IV immunohistochemistry with aldehyde fuchsine/Darrow red or with erythrosin-phosphotungstic acid-aniline blue staining for detailed study of the capillary network. In the first protocol, microinfarcts are recognizable as radially-oriented funnel-like accumulations of aldehyde fuchsine-positive macrophages. The second protocol recognizes microinfarcts and alterations of the capillary network, at whose center accumulations of dead neurons and aldehyde fuchsine-positive macrophages cluster. In addition, the second protocol permits visualization of abnormalities within the capillary network associated with more recent microinfarcts. Both protocols can be useful for comparing MRI datasets with cortical microinfarcts in corresponding whole brain sections of 100-300 µm thickness.


1964 ◽  
Vol 12 (2) ◽  
pp. 157 ◽  
Author(s):  
PS Woodland

A comparative study was carried out between diploid and tetraploid races of Themeda australis from Armidale and Cobar, respectively. Some morphological variations occur in both populations, but sporogenesis and gametogenesis are identical. The anther is tetrasporangiate and the development of its four-layered wall is described. The tapetum is of the secretory type and its cells become binucleate at the initiation of meiosis in the adjacent microspore mother cells which undergo successive cytokinesis. Microspore tetrads are usually isobilateral and the pollen grains are three-celled at dehiscence, which takes place by lateral longitudinal slits. The ovule is of a modified anatropous form and bitegmic, the broad micropyle being formed of both integuments. The single hypodermal archesporial cell develops directly into the megaspore mother cell and the nucellar epidermis undergoes periclinal and anticlinal divisions to form a conspicuous epistase. The chalaza1 megaspore of the linear tetrad gives rise to a Polygonum-type embryo sac. Material from the Armidale population showed one embryo sac per ovule, but two to five embryo sacs were present in that from Cobar. Embryogeny is typically graminaceous and endosperm formation is at first free-nuclear, later becoming cellular. Polyembryony follows fertilization of several embryo sacs within the same ovule. The reasons for low fertility of T. australis and poor germination of seeds are discussed.


1968 ◽  
Vol 16 (1) ◽  
pp. 1 ◽  
Author(s):  
GL Davis

A comparative study was made of material collected from four localities in New South Wales and Queensland and a number of embryological aberrations were found to be common to all districts. During microsporogenesis, certain tapetal cells not only failed to contribute to the tapetal periplasmodium but, after increasing in size, they separated from the anther wall and resembled one-, two-, or four-nucleate embryo sacs developing among the microspores. In one anther a structure was present which was very similar to a fully differentiated embryo sac. Although the pollen grains of some anthers contained male gametes, most anthers dehisced when the pollen was two-celled and some shrivelled soon after meiosis. Megasporogenesis was followed by the formation of linear tetrads of megaspores, but embryo sac formation was the result of somatic apospory and C. lappulacea appears to be an obligate apomict. The enlarging somatic cell usually invades the nucellar lobe and replaces the megaspores but one or more such celis commonly develop also in the chalaza, and up to eight embryo sacs were found in one ovule. Enlargement of a chalazal embryo sac sometimes resulted in penetration of the ovular epidermis and its invasion of the loculus as a haustorium-like structure. Extrusion of a developing embryo sac through the micropyle was common. Embryogeny is of the Asterad type, but vertical division of the terminal cell ca was delayed until after the basal cell cb had given rise to superposed cells m and ci. Polyembryony was common but only one embryo in each ovule reached maturity. Endosperm formation was independent of embryogeny but unless it was initiated before the globular stage of the embryo, the embryo sac collapsed and the embryo degenerated.


Sign in / Sign up

Export Citation Format

Share Document