male gametes
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 96)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Saurabh Pandey ◽  
Amir Bahram Moradi ◽  
Oleksandr Dovzhenko ◽  
Alisher Touraev ◽  
Klaus Palme ◽  
...  

Alternation of generations between a sporophytic and gametophytic developmental stage is a feature common to all land plants. This review will discuss the evolutionary origins of these two developmental programs from unicellular eukaryotic progenitors establishing the ability to switch between haploid and diploid states. We will compare the various genetic factors that regulate this switch and highlight the mechanisms which are involved in maintaining the separation of sporophytic and gametophytic developmental programs. While haploid and diploid stages were morphologically similar at early evolutionary stages, largely different gametophyte and sporophyte developments prevail in land plants and finally allowed the development of pollen as the male gametes with specialized structures providing desiccation tolerance and allowing long-distance dispersal. Moreover, plant gametes can be reprogrammed to execute the sporophytic development prior to the formation of the diploid stage achieved with the fusion of gametes and thus initially maintain the haploid stage. Upon diploidization, doubled haploids can be generated which accelerate modern plant breeding as homozygous plants are obtained within one generation. Thus, knowledge of the major signaling pathways governing this dual ontogeny in land plants is not only required for basic research but also for biotechnological applications to develop novel breeding methods accelerating trait development.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Eva Tvrdá ◽  
Miroslava Kačániová ◽  
Andrej Baláži ◽  
Jaromír Vašíček ◽  
Jakub Vozaf ◽  
...  

Bacterial contamination of semen is an often overlooked, yet important, factor contributing to decreased sperm vitality. Understanding the impact of bacterial presence on sperm structural integrity and functional activity may assist the development of effective strategies to prevent, or manage, bacteriospermia in the breeding practice. The aim of this study was to describe the bacterial profiles of ram semen (n = 35), and we also focused on the associations between bacteriospermia, sperm structure, and function, as well as oxidative and inflammatory characteristics of semen. For a better insight, the samples were divided into three groups, according to the breeds used in the study: native Wallachian (NW), improved Wallachian (IW), and Slovak dairy (SD) breeds. The results showed a significantly lower motility and membrane integrity in the NW group in comparison to the IW and SD groups, which was accompanied by a significantly higher concentration of leukocytes, increased reactive oxygen species (ROS) generation, and subsequent oxidative insults to the sperm lipids and proteins. Accordingly, the NW group presented with the highest bacterial load, in which Staphylococcus and Escherichia were the predominant representatives. The Pearson correlation analysis uncovered positive relationships amongst the bacterial load and leukocytospermia (r = 0.613), the extent of lipid peroxidation (r = 0.598), protein oxidation (r = 0.514), and DNA fragmentation (r = 0.638). Furthermore, positive correlations were found between the bacterial load and pro-inflammatory molecules, such as the C-reactive protein (r = 0.592), interleukin 1 (r = 0.709), and interleukin 6 (r = 0.474), indicating a possible involvement of the immune response in the process of bacteriospermia. Overall, our data indicate that ram semen quality may be equally affected by the bacterial load and diversity. Furthermore, we can assume that the presence of bacteria in ejaculates triggers inflammatory processes, causes ROS overproduction, and, thereby, contributes to alterations in the sperm structure, while at the same time compromising the fertilization ability of male gametes.


CYTOLOGIA ◽  
2021 ◽  
Vol 86 (4) ◽  
pp. 311-315
Author(s):  
Tomonari Hirano ◽  
Yuka Matsuyama ◽  
Anna Hanada ◽  
Yoriko Hayashi ◽  
Tomoko Abe ◽  
...  

Stresses ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-16
Author(s):  
Martin Massányi ◽  
Soisungwan Satarug ◽  
Roberto Madeddu ◽  
Robert Stawarz ◽  
Peter Massányi

Cadmium (Cd) is an environmental toxicant, capable of reducing mitochondrial ATP production and promoting the formation of reactive oxygen species (ROS) with resultant oxidative stress conditions. The ovary and testis are the primary gonads in which female gametes (oocytes) and male gametes (spermatozoa), estrogen and testosterone are produced. These organs are particularly susceptible to Cd cytotoxicity due to their high metabolic activities and high energy demands. In this review, epidemiological and experimental studies examining Cd toxicities in gonads are highlighted together with studies using zinc (Zn), selenium (Se), and natural substances to reduce the effects of Cd on follicular genesis and spermatogenesis. Higher blood concentrations of Cd ([Cd]b) were associated with longer time-to-pregnancy in a prospective cohort study. Cd excretion rate (ECd) as low as 0.8 μg/g creatinine was associated with reduced spermatozoa vitality, while Zn and Se may protect against spermatozoa quality decline accompanying Cd exposure. ECd > 0.68 µg/g creatinine were associated with an increased risk of premature ovarian failure by 2.5-fold, while [Cd]b ≥ 0.34 µg/L were associated with a 2.5-fold increase in the risk of infertility in women. Of concern, urinary excretion of Cd at 0.68 and 0.8 μg/g creatinine found to be associated with fecundity are respectively 13% and 15% of the conventional threshold limit for Cd-induced kidney tubular effects of 5.24 μg/g creatinine. These findings suggest that toxicity of Cd in primary reproductive organs occurs at relatively low body burden, thereby arguing for minimization of exposure and environmental pollution by Cd and its transfer to the food web.


2021 ◽  
Author(s):  
Holly Matthews ◽  
Jennifer McDonald ◽  
Francis Isidore G. Totanes ◽  
Catherine J Merrick

Malaria parasites undergo a single phase of sexual reproduction in their complex lifecycle, during which they cycle between mosquito and vertebrate hosts. Sexual reproduction occurs only at the point when parasites move into the mosquito host. It involves specialised, sexually committed cells called gametocytes, which develop very rapidly into mature gametes and then mate inside the mosquito midgut. The gamete development process is unique, involving unprecedentedly fast replication and cell division to produce male gametes. A single male gametocyte replicates its ~23Mb genome three times over to produce 8 genomes, segregates these into newly-assembled flagellated gamete cells and releases them to seek out female gametes, all within ~15 minutes. Here, for the first time, we use fluorescent labelling of de novo DNA synthesis to follow this process at the whole-cell and single-molecule levels, yielding several novel observations. Firstly, we confirm that no DNA replication occurs before gametogenesis is triggered, although the origin recognition complex protein Orc1 is abundant even in immature gametocytes. Secondly, between repeated rounds of DNA replication there is no detectable karyokinesis - in contrast to the repeated replicative rounds that occur in asexual schizonts. Thirdly, cytokinesis is clearly uncoupled from DNA replication, and can occur even if replication fails, implying a lack of cell cycle checkpoints. Finally the single-molecule dynamics of DNA replication are entirely different from those in asexual schizonts.


2021 ◽  
Vol 11 (4) ◽  
pp. 163-196
Author(s):  
Luís Rato ◽  
Ana C. A. Sousa

The current scenario of male infertility is not yet fully elucidated; however, there is increasing evidence that it is associated with the widespread exposure to endocrine-disrupting chemicals (EDCs), and in particular to obesogens. These compounds interfere with hormones involved in the regulation of metabolism and are associated with weight gain, being also able to change the functioning of the male reproductive axis and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. The permanent exposure to obesogens has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline of male fertility and key players in shaping the future health outcomes not only for those who are directly exposed but also for upcoming generations. In addition to the changes that lead to inefficient functioning of the male gametes, obesogens induce alterations that are “imprinted” on the genes of the male gametes, establishing a link between generations and contributing to the transmission of defects. Unveiling the molecular mechanisms by which obesogens induce toxicity that may end-up in epigenetic modifications is imperative. This review describes and discusses the suggested molecular targets and potential mechanisms for obesogenic–disrupting chemicals and the subsequent effects on male reproductive health.


mBio ◽  
2021 ◽  
Author(s):  
Sudhir Kumar ◽  
Meseret T. Haile ◽  
Michael R. Hoopmann ◽  
Linh T. Tran ◽  
Samantha A. Michaels ◽  
...  

Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence.


2021 ◽  
Author(s):  
Oyovwi Mega Obukohwo ◽  
Nwangwa Eze Kingsley ◽  
Rotu Arientare Rume ◽  
Emojevwe Victor

The human reproductive system is made up of the primary and secondary organs, which helps to enhances reproduction. The male reproductive system is designed to produce male gametes and convey them to the female reproductive tract through the use of supportive fluids and testosterone synthesis. The paired testis (site of testosterone and sperm generation), scrotum (compartment for testis localisation), epididymis, vas deferens, seminal vesicles, prostate gland, bulbourethral gland, ejaculatory duct, urethra, and penis are the parts of the male reproductive system. The auxiliary organs aid in the maturation and transportation of sperm. Semen is made up of sperm and the secretions of the seminal vesicles, prostate, and bulbourethral glands (the ejaculate). Ejaculate is delivered to the female reproduc¬tive tract by the penis and urethra. The anatomy, embryology and functions of the male reproductive system are discussed in this chapter.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001434
Author(s):  
Kevin J. Hart ◽  
B. Joanne Power ◽  
Kelly T. Rios ◽  
Aswathy Sebastian ◽  
Scott E. Lindner

Productive transmission of malaria parasites hinges upon the execution of key transcriptional and posttranscriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here, we show that in Plasmodium parasites, the NOT1 scaffold protein of the CAF1/CCR4/Not complex is duplicated, and one paralogue is dedicated for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g− parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin (TTP)-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-G’s essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that a NOT1-G paralogue in Plasmodium fulfills the complex transmission requirements of both male and female parasites.


Sign in / Sign up

Export Citation Format

Share Document