residue decomposition
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 43)

H-INDEX

36
(FIVE YEARS 2)

2022 ◽  
Vol 326 ◽  
pp. 107823
Author(s):  
Resham Thapa ◽  
Katherine L. Tully ◽  
Chris Reberg-Horton ◽  
Miguel Cabrera ◽  
Brian W. Davis ◽  
...  

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Xianhong Zhang ◽  
Zhilin Wang ◽  
Fengzhi Wu ◽  
Xingang Zhou

(1) Background: Residue degradation plays a very important role in terrestrial ecosystems and residue mixing is the main factor affecting the degradation rates. However, in the agricultural systems, the effect of residue mixing on the degradation of pepper residues and the microbial community in pepper root residues is not clear. (2) Methods: In this study, we added different residues into soil by using double-layered nylon litterbags in culture bottles. The treatments including pepper root (P: Capsicum annuum L.), soybean [S: Glycine max (L.) Merr.] and maize (M: Zea mays L.) residue, as well as mixtures of soybean + pepper (SP), maize + pepper (MP), maize + soybean + pepper (MSP) mixtures. Litterbags were harvested after 7, 14, 28, and 56 days, respectively. Mass loss and nitrogen and phosphorus contents in pepper residue were quantified and bacterial and fungal community levels in pepper residues were analyzed using quantitative PCR and high throughput amplicon sequencing; (3) Results: The study showed that the mass loss and fungal community abundance of pepper root residue in mixtures were higher than P, except day 7. The phosphorus contents in MSP-P and MP-P were significantly lower than that for P at day 28 and day 56. Illumina MiSeq sequencing showed that the presence of maize residue significantly altered the microbial community composition of pepper root pepper. Day 56. (4) Conclusions: Our results suggest that residue mixing changed the microbial community abundance in pepper residue and promoted the degradation of pepper residues compared to pepper residue decomposition alone, especially for mixtures with soybean.


2022 ◽  
Author(s):  
Camryn Carter ◽  
Justin Airas ◽  
Carol A. Parish

SARS-CoV-2 is a coronavirus that has created a global pandemic. The virus contains a spike protein which has been shown to bind to the ACE2 receptor on the surface of human cells. Vaccines have been developed that recognize elements of the SARS-CoV-2 spike protein and they have been successful in preventing infection. Recently, the omicron variant of the SARS-CoV-2 virus was reported and quickly became a variant of concern due to its transmissibility. This variant contained an unusually large number (32) of point mutations, of which 15 of those mutations are in the receptor binding domain of the spike protein. In order to assess the differential binding ability of the wild type and omicron variant of the RBD spike protein to human ACE2 receptors, we conducted 2 μs of molecular dynamics simulation to estimate the binding affinities and behaviors. Based upon MM-GBSA binding affinity, center of mass distance measurements, ensemble clustering, pairwise residue decomposition and hydrogen bonding analysis, we can conclude that the 15 point mutations in the receptor binding domain do not increase the affinity of the spike protein for the human ACE2 receptor. The MM-GBSA binding estimations over a 2 μs trajectory, suggest that the wild type binds to ACE2 with a value of -29.69 kcal/mol while the omicron mutant binds with an energy value of -26.67 kcal/mol. These values are within the error estimates of the MM-GBSA method. While some mutations increase binding, more mutations diminish binding, leading to an overall similar picture of binding.


2021 ◽  
Vol 20 (12) ◽  
pp. 3289-3298
Author(s):  
Shi-cheng ZHAO ◽  
Ignacio A. CIAMPITTI ◽  
Shao-jun QIU ◽  
Xin-peng XU ◽  
Ping HE

2021 ◽  
Author(s):  
Gaoming Xu ◽  
Yixuan Xie ◽  
Ruiyin He ◽  
Qishuo Ding

Abstract High-yielding agriculture leads to plenty of residues left in the field after harvest, which not only makes seeding operations difficult, but also decreases residue decomposition rate. Thus, it is necessary to incorporate some residue into the soil by tillage operations. Providing the relation between tillage operations and residue incorporation, and establishing a mathematical model plays an important role in residue management and the design of tillage machinery. In order to obtain detailed data on the interaction between crop residue and tillage operations, an electric and multi-functional field testing bench with precise parameter control was developed to perform residue incorporation characteristics of rotary tillage, and investigated straw length, rotary speed and stubble height effect on the dispersion and burying of residue. Three experimental factors affecting residue incorporation performance were studied, i.e. six lengths of straw (30-150 mm), four heights of stubble (50-200 mm), and three rotary speeds (240-320 rpm). Chopped straw and stubble with certain sizes were prepared for the test, and measure the dispersion uniformity and burying rate of residue after rotary tillage. The results indicated that straw length, stubble height, and rotary speed all impact residue incorporation quality. The dispersion uniformity and burying rate of residue decreased with the increase of straw length and stubble height; Lower rotary speed parameter buried lesser residue and dispersed worse uniformity than higher one; It is suggested that farmers determine the straw length and stubble height at the stage of harvest according to the burying rate and dispersion uniformity of residue.


2021 ◽  
Vol 20 (11) ◽  
pp. 3039-3059
Author(s):  
Cyrine REZGUI ◽  
Isabelle TRINSOUTROT-GATTIN ◽  
Marie BENOIT ◽  
Karine LAVAL ◽  
Wassila RIAH-ANGLET

Nitrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 444-460
Author(s):  
Tanjila Jesmin ◽  
Dakota T. Mitchell ◽  
Richard L. Mulvaney

The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect of synthetic N addition on the decomposition of two corn (Zea mays L.) stover mixtures differing in C:N ratio by continuous monitoring of CO2 emissions and periodic measurement of microbial biomass and enzyme activities involved in C and N cycling. Cumulative CO2 production was greater for the high than low N residue treatment, and was significantly increased by the addition of exogenous N. The latter effect was prominent during the first month of incubation, whereas N-treated soils produced less CO2 in the second month, as would be expected due to more rapid substrate depletion from microbial C utilization previously enhanced by greater N availability. The stimulatory effect of exogenous N was verified with respect to active biomass, microbial biomass C and N, and cellulase and protease activities, all of which were significantly correlated with cumulative CO2 production. Intensive N fertilization in modern corn production increases the input of residues but is not conducive to soil C sequestration.


Geoderma ◽  
2021 ◽  
Vol 400 ◽  
pp. 115127
Author(s):  
Weiling Dong ◽  
Xu Li ◽  
Enzhao Wang ◽  
Xiongduo Liu ◽  
Meng Wang ◽  
...  

2021 ◽  
Vol 320 ◽  
pp. 107609
Author(s):  
Sam J. Leuthold ◽  
Dan Quinn ◽  
Fernando Miguez ◽  
Ole Wendroth ◽  
Monsterrat Salmerón ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document