scholarly journals A SOLUTION TO STEFAN PROBLEM USING EULERIAN TWO FLUID VOF MODEL

Brodogradnja ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 141-164
Author(s):  
Alen Cukrov ◽  
◽  
Yohei Sato ◽  
Ivanka Boras ◽  
Bojan Ničeno ◽  
...  

A novel approach for the solution of Stefan problem within the framework of the multi fluid model supplemented with Volume of Fluid (VOF) method, i.e. two-fluid VOF, is presented in this paper. The governing equation set is comprised of mass, momentum and energy conservation equations, written on a per phase basis and supplemented with closure models via the source terms. In our method, the heat and mass transfer is calculated from the heat transfer coefficient, which has a fictitious function and depends on the local cell size and the thermal conductivity, and the implementation is straightforward because of the usage of the local value instead of a global parameter. The interface sharpness is ensured by the application of the geometrical reconstruction scheme implemented in VOF. The model is verified for three types of computational meshes including triangular cells, and good agreement was obtained for the interface position and the temperature field. Although the developed method was validated only for Stefan problem, the application of the method to engineering problems is considered to be straightforward since it is implemented to a commercial CFD code only using a local value; especially in the field of naval hydrodynamics wherein the reduction of ship resistance using boiling flow can be computed efficiently since the method handles phase change processes using low resolution meshes.

1986 ◽  
Vol 108 (1) ◽  
pp. 100-108 ◽  
Author(s):  
R. C. Dykhuizen ◽  
R. P. Roy ◽  
S. P. Kalra

A linear analysis of dynamic instability in boiling flow systems has been carried out in the time domain. An unequal velocity, unequal temperature two-fluid model description of boiling flow is used. Instability threshold results of the density-wave oscillation type obtained have been compared with experimental data from Refrigerant-113 and water systems with satisfactory agreement.


Author(s):  
Stamatis Kalogerakos ◽  
Mustapha Gourma ◽  
Chris Thompson

Severe limitations of the use of three-dimensional computational fluid dynamics codes (CFD) arise when trying to simulate multiphase flow in long pipes due to time constraints. 1D codes for two-phase flow, based on two-fluid models, are fast but are known to be accurate only when the velocities are within the Kelvin-Helmholtz inviscid limit [1]. An alternative is to carry out a two-dimensional CFD simulation of a channel based on the Volume of Fluid (VOF) model. 2D CFD has a wider applicability range compared to 1D, it does not have the issue of ill-posedness and it also has better turbulence models built in. Again compared to 1D the 2D VOF model has a better interface description and wall treatment. In this paper a novel method is introduced that allows swift simulations of pipeline two-phase flow in the stratified and slug flow regime, by approximating the pipe as a channel and with a methodology that solves the problem of the interfacial velocity differences, inherent in the volume of fluid model. An initial validation using the wave growth problem has already been carried out [2]. Here a set consisting of 92 experimental cases in the slug flow regime has been simulated with 2D CFD, and the simulation results showed a good agreement with experimental results. Discussions in the paper include also the question of the range of applicability for 2D CFD, and the advantages and disadvantages compared to 3D CFD and also to 1D code based on the two-fluid model. Shear stresses are then extracted from the 2D CFD simulations and used to recalibrate the friction factors [3] used in the 1D code.


2005 ◽  
Author(s):  
Bosˇtjan Koncˇar ◽  
Ivo Kljenak ◽  
Borut Mavko

Subcooled boiling flow was simulated by combining the two-fluid model of the CFX-4.4 code and a Lagrangian bubble-tracking model. At present, both models are coupled “off-line” via the local bubble Sauter diameter. The two-fluid model simulation with the CFX-4.4 code provides local values of turbulent kinetic energy field of the liquid phase, which is used as an input for the bubble-tracking model. In the bubble-tracking model, vapour is distributed in the liquid in the form of individually tracked bubbles. The result of the Lagrangian simulation is a non-homogeneous distribution of local Sauter diameter, which is used in the two-fluid model to predict the interfacial forces and interfacial transfer rates of mass and heat transfer. The coupled approach requires a few iterations to obtain a converged solution. The results of the proposed approach were validated against boiling flow experiments from the literature. A good agreement between measured and calculated radial profiles of void fraction and bubble diameter was obtained.


1991 ◽  
Vol 113 (1) ◽  
pp. 216-223 ◽  
Author(s):  
A. Hasan ◽  
R. P. Roy ◽  
S. P. Kalra

Measurements of local vapor phase residence time fraction, liquid phase temperature, and heated wall temperature were carried out in subcooled flow boiling of Refrigerant-113 through a vertical annular channel. Data are reported for two fluid mass velocities and two pressures over a range of wall heat flux. Estimates of typical vapor bubble size and velocity are given. Some comparisons with a one-dimensional two-fluid model of subcooled boiling flow are also presented.


1986 ◽  
Vol 29 (9) ◽  
pp. 1349-1357 ◽  
Author(s):  
R.P. Roy ◽  
M.-G. Su ◽  
R.C. Dykhuizen ◽  
S.P. Kalra

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 364
Author(s):  
Hassan Fayed ◽  
Mustafa Bukhari ◽  
Saad Ragab

Large-eddy simulations have been conducted for two-phase flow (water and air) in a hydrocyclone using Two-Fluid (Euler–Euler) and Volume-of-Fluid (VOF) models. Subgrid stresses are modeled using a dynamic eddy–viscosity model, and results are compared to those using the Smagorinsky model. The effects of grid resolutions on the mean flow and turbulence statistics have been thoroughly investigated. Five block-structured grids of 0.72, 1.47, 2.4, 3.81, and 7.38 million elements have been used for the simulations of Hsieh’s 75 mm hydrocyclone Mean velocity profiles and normal Reynolds stresses have been compared with experimental data. Results of the two-fluid model are in good agreement with those of the VOF model. A fine mesh in the axial and radial directions is necessary for capturing the turbulent vortical structure. Turbulence structures in the hydrocyclone are dominated by helical vortices around the air core. Energy spectra are analyzed at different points in the hydrocyclone, and regions of low turbulent kinetic energy are identified and attributed to stabilizing effects of the swirling velocity component.


Sign in / Sign up

Export Citation Format

Share Document