Chromosome Banding Methods, Standard Chromosome Band Nomenclature, and Applications in Cytogenetic Analysis

Author(s):  
Bikram S. Gill
Genetics ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 371-386
Author(s):  
Michael A Kotarski ◽  
Sally Pickert ◽  
Ross J MacIntyre

ABSTRACT The chromosomal region surrounding the structural gene for α-glycerophosphate dehydrogenase (αGpdh, 2-20.5) of Drosophila melanogaster has been studied in detail. Forty-three EMS-induced recessive lethal mutations and five previously identified visible mutations have been localized within the 25A-27D region of chromosome 2 by deficiency mapping and in some cases by a recombination analysis. The 43 lethal mutations specify 17 lethal loci. ?Gpdh has been localized to a single polytene chromosome band, 25F5, and there apparently are no lethals that map to the αGpdh locus.


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2036-2041 ◽  
Author(s):  
Konstanze Fischer ◽  
Stefan Fröhling ◽  
Stephen W. Scherer ◽  
Jill McAllister Brown ◽  
Claudia Scholl ◽  
...  

Abstract Loss of chromosome 7 (−7) or deletion of its long arm (7q−) are recurring chromosome abnormalities in myeloid disorders, especially in therapy-related myelodysplastic syndrome (t-MDS) and acute myeloid leukemia (t-AML). The association of −7/7q− with myeloid leukemia suggests that these regions contain a novel tumor suppressor gene(s) whose loss of function contributes to leukemic transformation or tumor progression. Based on chromosome banding analysis, two critical regions have been identified: one in band 7q22 and a second in bands 7q32-q35. We analyzed bone marrow and blood samples from 21 patients with myeloid leukemia (chronic myeloid leukemia, n = 2; de novo MDS, n = 4; de novo AML, n = 13; t-AML, n = 2) that on chromosome banding analysis exhibited deletions (n = 19) or reciprocal translocations (n = 2) of band 7q22 using fluorescence in situ hybridization. As probes, we used Alu-polymerase chain reaction products from 22 yeast artificial chromosome (YAC) clones that span chromosome bands 7q21.1-q32, including representative clones from a panel of YACs recognizing a contiguous genomic DNA fragment of 5 to 6 Mb in band 7q22. In the 19 cases with deletions, we identified two distinct commonly deleted regions: one region within band 7q22 was defined by the two CML cases; the second region encompassed a distal part of band 7q22 and the entire band 7q31 and was defined by the MDS/AML cases. The breakpoint of one of the reciprocal translocations was mapped to 7q21.3, which is centromeric to both of the commonly deleted regions. The breakpoint of the second translocation, which was present in unstimulated bone marrow and phytohemagglutinin-stimulated blood of an MDS patient, was localized to a 400-kb genomic segment in 7q22 within the deletion cluster of the MDS/AML cases. In conclusion, our data show marked heterogeneity of 7q22 deletion and translocation breakpoints in myeloid leukemias, suggesting the existence of more than one pathogenetically relevant gene.


Genetica ◽  
2008 ◽  
Vol 135 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Alicja Boron ◽  
Katarzyna Porycka ◽  
Daisuke Ito ◽  
Syuiti Abe ◽  
Lech Kirtiklis

Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3962-3971 ◽  
Author(s):  
K Fischer ◽  
C Scholl ◽  
J Salat ◽  
S Frohling ◽  
R Schlenk ◽  
...  

The objective of this study was to design DNA probe sets that enable the detection of chromosome aberrations in acute myeloid leukemia (AML) by interphase cytogenetics using fluorescence in situ hybridization (FISH) and to compare the results of interphase cytogenetics with those of conventional chromosome banding analysis. One hundred five consecutive patients with adult AML entered on a multicenter treatment trial were studied with a comprehensive set of DNA probes recognizing the most relevant AML-associated structural and numerical chromosome aberrations: translocations t(8;21), t(15;17), and t(11q23); inversion inv(16);chromosomal deletions (5q-, 7q-, 9q-, 12p-, 13q-, 17p-, and 20q- ); and chromosomal aneuploidies. Interphase cytogenetics was particularly sensitive for detecting the AML-specific gene fusions: 3 additional cases of inv(16) and 1 additional case of t(8;21) were identified by FISH that were missed by banding analysis, whereas equal numbers of t(11q23) and t(15;17) were detected. Five additional cases of trisomy 8q, 3 more cases of trisomy 11q, and 2 more cases of trisomies 21q and 22q were shown by FISH. These aberrations were either masked in complex karyo-types or identified in cases in which conventional banding analysis failed. On the other hand, the DNA probes selected were not informative to detect 1 case of 5q-, 9q-, and 20q-. In 5 cases, clonal aberrations were detected on banding analysis for which no FISH probes were selected. In conclusion, interphase cytogenetics proved to be more sensitive for detecting AML-specific chimeric gene fusions and some partial trisomies. Interphase cytogenetics provides a powerful technique complementary and, with further development of diagnostic DNA probes, even an alternative to chromosome banding studies for the cytogenetic analysis of AML.


1996 ◽  
Vol 74 (1) ◽  
pp. 171-191 ◽  
Author(s):  
Iya I. Kiknadze ◽  
Karlygash G. Aimanova ◽  
Larissa I. Gunderina ◽  
Malcolm G. Butler ◽  
J. Kevin Cooper

Polytene chromosomes of Chironomus (Camptochironomus) tentans from Europe, Siberia, and North America were examined to clarify genetic relationships among widely distributed populations of this Holarctic midge. This first extensive cytogenetic analysis of Siberian populations confirms earlier suppositions that C. tentans karyotypes are quite uniform across the Palearctic from western Europe to Yakutia. Greater differences exist among North American populations in Minnesota, Michigan, and Massachusetts, and as a group, these Nearctic populations share so few banding sequences with Palearctic C. tentans that recognition of discrete sibling species on each contintent is warranted. Photomaps of polytene chromosomes for both Palearctic and Nearctic sibling species are presented, and banding sequences are described with standardized notation. In total, 42 inversion sequences were found in the 18 Siberian populations examined, 15 of which were previously undescribed. Of the 19 sequences found in the three American populations studied, only 6 were shared with the Palearctic. Three of the seven chromosome arms in Nearctic C. tentans had no sequences in common with European populations and four shared none with Siberian populations.


Genetics ◽  
1991 ◽  
Vol 127 (3) ◽  
pp. 553-564 ◽  
Author(s):  
P Dimitri

Abstract This paper reports the cytogenetic characterization of the second chromosome heterochromatin of Drosophila melanogaster. High resolution cytological analysis of a sample of translocations, inversions, deficiencies and free duplications involving the pericentric regions of the second chromosome was achieved by applying sequential Hoechst 33258 and N-chromosome banding techniques to larval neuroblast prometaphase chromosomes. Heterochromatic rearrangements were employed in a series of complementation assays and the genetic elements previously reported to be within or near the second chromosome heterochromatin were thus precisely assigned to specific heterochromatic bands. The results of this analysis reveal a nonhomogeneous distribution of loci along the second chromosome heterochromatin. The l(2)41Aa, l(2)41Ab, rolled (l(2)41Ac) and l(2)41Ad loci are located within the proximal heterochromatin of 2R, while the nine remaining loci in the left arm and two (l(2)41Ae and l(2)41Ah) in the right arm map to h35 and to h46, respectively, the most distal heterochromatic regions. In addition, a common feature of these loci revealed by the cytogenetic analysis is that they map to specific heterochromatic blocks but do not correspond to the blocks themselves, suggesting that they are not as large as the Y fertility factors or the Rsp locus. Mutations of the proximal most heterochromatic loci, l(2)41Aa and rolled, were also examined for their phenotypic effects. Extensive cell death during imaginal disc development was observed in individuals hemizygous for either the EMS 31 and rolled mutations, leading to a pattern of phenotypic defects of adult structures.


2001 ◽  
Vol 32 (1) ◽  
pp. 43-43 ◽  
Author(s):  
P. Zambonelli ◽  
J. Milc ◽  
R. Davoli ◽  
V. Russo ◽  
S. Kubickova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document