Lake Water Quality Modeling for Projected Future Climate Scenarios

1993 ◽  
Vol 22 (3) ◽  
pp. 417-431 ◽  
Author(s):  
H. G. Stefan ◽  
M. Hondzo ◽  
X. Fang
2012 ◽  
Vol 47 (3-4) ◽  
pp. 375-388 ◽  
Author(s):  
Xing Fang ◽  
Shoeb R. Alam ◽  
Heinz G. Stefan ◽  
Liping Jiang ◽  
Peter C. Jacobson ◽  
...  

A deterministic, process-oriented, dynamic and one-dimensional year-round lake water quality model, MINLAKE2010, was developed for water temperature (T) and dissolved oxygen (DO) simulations to study impacts of climate warming on lake water quality and cisco fish habitat. The DO model is able to simulate metalimnetic oxygen maxima in vertical DO profiles of oligotrophic lakes. The model was calibrated with profile data from the 28 study lakes in Minnesota; two-thirds of them are deep mesotrophic/oligotrophic lakes that support cisco, a coldwater fish species. The average standard error of estimate against measured data was 1.47 °C for T and 1.50 mg/L for DO. Oxythermal habitat parameter TDO3 (T at DO = 3 mg/L) was determined from simulated daily T and DO profiles under past and future climate scenarios in the 28 study lakes. Average annual maximum TDO3 (TDO3AM) for the 28 study lakes is projected to increase on the average of 3.2 °C under the MIROC 3.2 future scenario, while the occurrence day of TDO3AM is not much different under past and future climate scenarios. Both physical processes (mixing characteristics related to lake geometry ratio) and trophic status control temperature and DO characteristics and then affect cisco habitat in a lake.


2018 ◽  
Vol 101 ◽  
pp. 73-85 ◽  
Author(s):  
Amir Sadeghian ◽  
Steven C. Chapra ◽  
Jeff Hudson ◽  
Howard Wheater ◽  
Karl-Erich Lindenschmidt

2006 ◽  
Vol 2006 (2) ◽  
pp. 2240-2261
Author(s):  
I.F. Walder ◽  
N. Blandford, ◽  
T. Shelly Jr,

2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


2019 ◽  
Vol 55 (4) ◽  
pp. 2708-2721 ◽  
Author(s):  
S. M. Collins ◽  
S. Yuan ◽  
P. N. Tan ◽  
S. K. Oliver ◽  
J. F. Lapierre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document