Costing the Conservation of Genetic Resources: CIMMYT's Ex Situ Maize and Wheat Collection

Crop Science ◽  
2001 ◽  
Vol 41 (4) ◽  
pp. 1286-1299 ◽  
Author(s):  
Philip G. Pardey ◽  
Bonwoo Koo ◽  
Brian D. Wright ◽  
M. Eric Van Dusen ◽  
Bent Skovmand ◽  
...  
Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


Author(s):  
Eija Pouta ◽  
Annika Tienhaara ◽  
Heini Ahtiainen

The intensification of agriculture has led to remarkable changes in the utilization of agricultural genetic resources and many previously common breeds and varieties have become rare or even endangered (FAO 2007, 2010, Drucker, Gomez & Anderson 2001). In Finland, Eastern and Northern Finncattle, the Kainuu Grey Sheep and the Åland Sheep are endangered according to the FAO classification (FAO 2003) and, for example, majority of the old Finnish crop varieties and Finnish landrace pig are already extinct. Making informed decisions on the appropriate focus and extent of conservation of agricultural genetic resources requires information on both the costs and benefits of conservation. Economic analyses involving the valuation of conservation benefits can guide resource allocation of various types of genetic resources and conservation methods (Artuso 1998). The value of genetic resources is not typically revealed by markets, as they are not directly traded in the markets or the prices of agricultural products do not completely indicate their value (Oldfield 1989, Brown 1990, Drucker et al. 2001). Although the importance of economic analyses has been recognized, the literature on the monetary value of genetic resources in agriculture is relatively limited (see e.g. Evenson et al. 1998 and Rege and Gibson 2003, Ahtiainen & Pouta 2011). Currently the conservation policy of farm agricultural genetic resources in Finland is based on international agreements such as the Convention on Biological Diversity (1992) and the Global Plan of Action for Animal Genetic resources (FAO 2007). National genetic resource programs were initiated for plants in 2003 and for farm animals in 2005 to strengthen the conservation of genetic resources in Finland. Although there has been some progress in the implementation of the programs, they have also suffered from shortage of funds and lack of political interest in conservation. To re-evaluate the conservation policy, there is a need to use valuation methods capable of estimating also the non-use value components of genetic resources, i.e. stated preference methods. The choice experiment (CE) method has been found suitable to valuing genetic resources due to its flexibility and ability to value the traits of breeds or varieties and their attributes. Choice experiment makes it possible to value benefits of both plant genetic resources (PGR) and animal genetic resources (AnGR). The terms refer to all cultivated plant species and varieties, as well as all animal species and breeds that are of interest in terms of food and agricultural production. The CE method can also be used to evaluate the means of conservation in situ (live animals and plants) and ex situ (as seeds, cryopreserved embryos and other genetic material). Previous choice experiments have focused on valuing breeds or varieties and their attributes, especially on attributes that are related to the use of the breed or variety in agriculture (Birol et al. 2006, Ouma et al. 2007). In this study we present the results of a choice experiment valuing the benefits of a genetic resource conservation program in Finland. We test the effect of in situ and ex situ conservation on citizen choices between programs. We also analyse whether the plant varieties and animal breeds are perceived equally valuable by citizen. As the conservation of agricultural genetic resources (AgGR) cannot be expected to be equally valuable to all citizens, we analyse the existence of citizen segments that value differently the conservation of genetic resources. We can assume that AgGR is a rather unknown good for some of the respondents of the valuation survey. However, in valuation surveys respondents are assumed to make “informed” choices when responding to value elicitation questions (e.g. Blomquist &Whitehead 1998). Therefore, we offered an opportunity for respondents to obtain further information on AgGR. In our case, the internet-based survey allowed us also to measure how much time respondents took in reading the information and responding to questions. Furthermore, we also measured response certainty and tested the effects of uncertainty and information as reasons for heterogeneity.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
JS Sung ◽  
CW Jeong ◽  
YY Lee ◽  
HS Lee ◽  
YA Jeon ◽  
...  

2008 ◽  
Vol 42 ◽  
pp. 71-85 ◽  
Author(s):  
J.A. Woolliams ◽  
O. Matika ◽  
J. Pattison

SummaryLivestock production faces major challenges through the coincidence of major drivers of change, some with conflicting directions. These are:1. An unprecedented global change in demands for traditional livestock products such as meat, milk and eggs.2. Large changes in the demographic and regional distribution of these demands.3. The need to reduce poverty in rural communities by providing sustainable livelihoods.4. The possible emergence of new agricultural outputs such as bio-fuels making a significant impact upon traditional production systems.5. A growing awareness of the need to reduce the environmental impact of livestock production.6. The uncertainty in the scale and impact of climate change. This paper explores these challenges from a scientific perspective in the face of the large-scale and selective erosion of our animal genetic resources, and concludes thai there is a stronger and more urgent need than ever before to secure the livestock genetic resources available to humankind through a comprehensive global conservation programme.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


Author(s):  
Maria Y. Gonzalez ◽  
Yusheng Zhao ◽  
Yong Jiang ◽  
Nils Stein ◽  
Antje Habekuss ◽  
...  

AbstractKey messageGenomic prediction with special weight of major genes is a valuable tool to populate bio-digital resource centers.AbstractPhenotypic information of crop genetic resources is a prerequisite for an informed selection that aims to broaden the genetic base of the elite breeding pools. We investigated the potential of genomic prediction based on historical screening data of plant responses against theBarley yellow mosaic virusesfor populating the bio-digital resource center of barley. Our study includes dense marker data for 3838 accessions of winter barley, and historical screening data of 1751 accessions forBarley yellow mosaic virus(BaYMV) and of 1771 accessions forBarley mild mosaic virus(BaMMV). Linear mixed models were fitted by considering combinations for the effects of genotypes, years, and locations. The best linear unbiased estimations displayed a broad spectrum of plant responses against BaYMV and BaMMV. Prediction abilities, computed as correlations between predictions and observed phenotypes of accessions, were low for the marker-assisted selection approach amounting to 0.42. In contrast, prediction abilities of genomic best linear unbiased predictions were high, with values of 0.62 for BaYMV and 0.64 for BaMMV. Prediction abilities of genomic prediction were improved by up to ~ 5% using W-BLUP, in which more weight is given to markers with significant major effects found by association mapping. Our results outline the utility of historical screening data and W-BLUP model to predict the performance of the non-phenotyped individuals in genebank collections. The presented strategy can be considered as part of the different approaches used in genebank genomics to valorize genetic resources for their usage in disease resistance breeding and research.


2005 ◽  
Vol 41 (4) ◽  
pp. 475-489 ◽  
Author(s):  
VINCENT LEBOT ◽  
ANTON IVANCIC ◽  
KUTTOLAMADATHIL ABRAHAM

This paper addresses the preservation and use of minor root crop genetic resources, mostly aroids and yams. Conservation is fraught with difficulty: ex situ collections are expensive to maintain and methods for on-farm conservation have not been studied. Conventional breeding strategies present serious limitations when applied to these species. Furthermore, the evaluation and distribution of improved material are as problematical as its conservation. The similarities shared by these species regarding their domestication, breeding constraints and improvement strategies as well as farmers' needs, are briefly reviewed. Based on these biological constraints, we propose a practical alternative to current conservation and breeding strategies. This approach focuses on the geographical distribution of allelic diversity rather than localized ex situ and/or in situ preservation of genotypes. The practical steps are described and discussed. First, a core sample representing the useful diversity of the species is assembled from accessions selected for their diverse and distant geographic origins, wide genetic distances, quality, agronomic performances and functional sexuality. Second, the geographical distribution of this core sample, in vitro via a transit centre, allows the direct use of selected genotypes by farmers or for breeding purposes. Third, the distribution of genes is realized in the form of clones resulting from segregating progenies and, fourth, farmers select clones with local adaptation.


1971 ◽  
Vol 6 (6) ◽  
pp. 254-260 ◽  
Author(s):  
Helen Newton Turner

During the course of perhaps 10,000 years, man has domesticated for one purpose or another a very large number of animals, mostly mammals and birds. In many cases wild stocks of these animals have been greatly reduced while the domesticated animals themselves have been bred along specific lines to meet current requirements. Future needs may conceivably be somewhat different. What, then, can be done to conserve genetic resources in order to meet these needs ?


Sign in / Sign up

Export Citation Format

Share Document