spatial genetic structure
Recently Published Documents


TOTAL DOCUMENTS

627
(FIVE YEARS 144)

H-INDEX

46
(FIVE YEARS 4)

Author(s):  
Алла Александровна Емельянова ◽  
Наталья Евгеньевна Николаева ◽  
Елена Андреевна Гурская

На примере серий лягушки травяной из четырех биотопов, характеризующихся разной степенью пространственной изоляции, показана перспективность изучения биохорологической структуры данного вида с применением фенетического подхода. Наиболее детальную характеристику пространственно-генетической структуры можно получить при анализе пятнистости дорзальной поверхности тела. Так же для этих целей возможно использование вариаций таких элементов рисунка покровов тела, как форма межлопаточного пятна и число полос на бедре. The prospects of studying the biochorological structure of the selected species using a phenetic approach are shown in a series of common frogs from four biotopes characterized by varying degrees of spatial isolation. The most detailed characterization of the spatial-genetic structure can be obtained by analyzing the spotting of the dorsal surface of the body. Also, for these purposes, it is possible to use variations of such elements of the body covering pattern as the shape of the interscapular spot and the number of stripes on the thigh.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Seung-Beom Chae ◽  
Hyo-In Lim ◽  
Yong-Yul Kim

The restoration of damaged or disrupted forests with genetically appropriate restoration planting material that can adapt to future environmental conditions will ensure the conservation of forest genetic resources. Abies koreana is endemic to the Republic of Korea, with declining populations under current environmental changes. In this study, we examined the genetic diversity of its largest population growing on Mt. Hallasan to determine the sampling size of planting material from the population that will ensure 95% coverage of alleles in the population. We evaluated the genetic diversity and spatial genetic structure of three subpopulations of A. koreana on Mt. Hallasan. A total of 456 samples were evaluated using 10 microsatellites. The observed heterozygosity and expected heterozygosity were 0.538 and 0.614 at the population level, respectively. The differences among the subpopulations accounted for 4% of the total variance. Intervals between individuals of the sample to be extracted were based on the two-target distance (5 and 10 m) inferred from the spatial genetic structure. Through random sampling methods considering the target distance, we showed that genetic diversity can be captured by obtaining at least 35 individuals in the population of A. koreana on Mt. Hallasan.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2025
Author(s):  
Zubaria Waqar ◽  
Ramiris César Souza Moraes ◽  
Maíra Benchimol ◽  
José Carlos Morante-Filho ◽  
Eduardo Mariano-Neto ◽  
...  

The Atlantic Forest remnants in southern Bahia, Brazil, contain large tree species that have suffered disturbances in recent decades. Anthropogenic activities have led to a decrease in the population of many tree species and a loss of alleles that can maintain the evolutionary fitness of their populations. This study assessed patterns of genetic diversity, spatial genetic structure, and genetic structure among Manilkara multifida Penn. populations, comparing the genetic parameters of adult and juvenile trees. In particular, we collected leaves from adults and juveniles of M. multifida in two protected areas, the Veracel Station (EVC) and the Una Biological Reserve (UBR), located in threatened Atlantic Forest fragments. We observed a substantial decay in genetic variability between generations in both areas i.e., adults’ HO values were higher (EVC = 0.720, UBR = 0.736) than juveniles’ (EVC = 0.463 and UBR = 0.560). Both juveniles and adults showed genetic structure between the two areas (θ = 0.017 for adults and θ = 0.109 for juveniles). Additionally, forest fragments indicated an unexpectedly short gene flow. Our results, therefore, highlight the pervasive effects of historical deforestation and other human disturbances on the genetic diversity of M. multifida populations within a key conservation region of the Atlantic Forest biodiversity hotspot.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 654
Author(s):  
Jian-Feng Huang ◽  
Clive T. Darwell ◽  
Yan-Qiong Peng

As well as bountiful natural resources, the Indo-Burma biodiversity hotspot features high rates of habitat destruction and fragmentation due to increasing human activity; however, most of the Indo-Burma species are poorly studied. The exploration of plants closely associated with human activity will further assist us to understand our influence in the context of the ongoing extinction events in the Anthropocene. This study, based on widely and intensively sampled F. altissima across Indo-Burma and the adjacent south China ranges, using both the chloroplast psbA-trnH spacer and sixteen newly developed nuclear microsatellite markers (nSSRs), aims to explore its spatial genetic structure. The results indicated low chloroplast haplotype diversity and a moderate level of nuclear genetic diversity. Although limited seed flow was revealed by psbA-trnH, no discernible phylogeographic structure was shown due to the low resolution of cpDNA markers and dominance of an ancestral haplotype. From the nSSRs data set, phylogeographic structure was homogenized, most likely due to extensive pollen flow mediated by pollinating fig wasps. Additionally, human cultivation and human-mediated transplanting further confounded the analyses of population structure. No geographic barriers are evident across the large study range, with F. altissima constituting a single population, and extensive human cultivation is likely to have had beneficial consequences for protecting the genetic diversity of F. altissima.


Heredity ◽  
2021 ◽  
Author(s):  
Luciano Atzeni ◽  
Samuel A. Cushman ◽  
Jun Wang ◽  
Philip Riordan ◽  
Kun Shi ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259595
Author(s):  
David Veliz ◽  
Noemi Rojas-Hernández ◽  
Pablo Fibla ◽  
Boris Dewitte ◽  
Sebastián Cornejo-Guzmán ◽  
...  

Most benthic marine invertebrates with sedentary benthic adult phases have planktonic larvae that permit connectivity between geographically isolated populations. Planktonic larval duration and oceanographic processes are vital to connecting populations of species inhabiting remote and distant islands. In the present study, we analyzed the population genetic structure of the sea urchin Centrostephanus sylviae, which inhabits only the Juan Fernández Archipelago and the Desventuradas islands, separated by more than 800 km. For 92 individuals collected from Robinson Crusoe and Selkirk Islands (Juan Fernández Archipelago) and San Ambrosio Island (Desventuradas Islands), 7,067 single nucleotide polymorphisms (SNPs) were obtained. The results did not show a spatial genetic structure for C. sylviae; relative high migration rates were revealed between the islands. An analysis of the water circulation pattern in the area described a predominant northward water flow with periods of inverted flow, suggesting that larvae could move in both directions. Overall, this evidence suggests that C. sylviae comprises a single large population composed of individuals separated by more than 800 km.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cleber Juliano Neves Chaves ◽  
Bárbara Simões Santos Leal ◽  
Davi Rodrigo Rossatto ◽  
Uta Berger ◽  
Clarisse Palma-Silva

AbstractThe rapid spread of many weeds into intensely disturbed landscapes is boosted by clonal growth and self-fertilization strategies, which conversely increases the genetic structure of populations. Here, we use empirical and modeling approaches to evaluate the spreading dynamics of Tillandsia recurvata (L.) L. populations, a common epiphytic weed with self-reproduction and clonal growth widespread in dry forests and deforested landscapes in the American continent. We introduce the TRec model, an individual-based approach to simulate the spreading of T. recurvata over time and across landscapes subjected to abrupt changes in tree density with the parameters adjusted according to the empirical genetic data based on microsatellites genotypes. Simulations with this model showed that the strong spatial genetic structure observed from empirical data in T. recurvata can be explained by a rapid increase in abundance and gene flow followed by stabilization after ca. 25 years. TRec model’s results also indicate that deforestation is a turning point for the rapid increase in both individual abundance and gene flow among T. recurvata subpopulations occurring in formerly dense forests. Active reforestation can, in turn, reverse such a scenario, although with a milder intensity. The genetic-based study suggests that anthropogenic changes in landscapes may strongly affect the population dynamics of species with ‘weedy’ traits.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1401
Author(s):  
Nikita Chertov ◽  
Yulia Vasilyeva ◽  
Andrei Zhulanov ◽  
Yulia Nechaeva ◽  
Svetlana Boronnikova ◽  
...  

The Ural Mountains and the West Eurasian Taiga forests are one of the most important centers of genetic diversity for Larix sibirica Ledeb. Forest fragmentation negatively impacts forest ecosystems, especially due to the impact of their intensive use on the effects of climate change. For the preservation and rational use of forest genetic resources, it is necessary to carefully investigate the genetic diversity of the main forest-forming plant species. The Larix genus species are among the most widespread woody plants in the world. The Siberian larch (Larix sibirica, Pinaceae) is found in the forest, forest-tundra, tundra (Southern part), and forest-steppe zones of the North, Northeast, and partly East of the European part of Russia and in Western and Eastern Siberia; in the Urals, the Siberian larch is distributed fragmentarily. In this study, eight pairs of simple sequence repeat (SSR) primers were used to analyse the genetic diversity and population structure of 15 Siberian larch populations in the Urals. Natural populations in the Urals exhibit indicators of genetic diversity comparable to those of Siberia populations (expected heterozygosity, He = 0.623; expected number of alleles, Ne = 4017; observed heterozygosity, Ho = 0.461). Genetic structure analysis revealed that the examined populations are relatively highly differentiated (Fst = 0.089). Using various algorithms for determining the spatial genetic structure, the examined populations formed three groups according to geographical location. The data obtained are required for the development of species conservation and restoration programs, which are especially important in the Middle Urals, which is the region with strong forest fragmentation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alison G. Nazareno ◽  
L. Lacey Knowles

The application of high-density polymorphic single-nucleotide polymorphisms (SNP) markers derived from high-throughput sequencing methods has heralded plenty of biological questions about the linkages of processes operating at micro- and macroevolutionary scales. However, the effects of SNP filtering practices on population genetic inference have received much less attention. By performing sensitivity analyses, we empirically investigated how decisions about the percentage of missing data (MD) and the minor allele frequency (MAF) set in bioinformatic processing of genomic data affect direct (i.e., parentage analysis) and indirect (i.e., fine-scale spatial genetic structure – SGS) gene flow estimates. We focus specifically on these manifestations in small plant populations, and particularly, in the rare tropical plant species Dinizia jueirana-facao, where assumptions implicit to analytical procedures for accurate estimates of gene flow may not hold. Avoiding biases in dispersal estimates are essential given this species is facing extinction risks due to habitat loss, and so we also investigate the effects of forest fragmentation on the accuracy of dispersal estimates under different filtering criteria by testing for recent decrease in the scale of gene flow. Our sensitivity analyses demonstrate that gene flow estimates are robust to different setting of MAF (0.05–0.35) and MD (0–20%). Comparing the direct and indirect estimates of dispersal, we find that contemporary estimates of gene dispersal distance (σrt = 41.8 m) was ∼ fourfold smaller than the historical estimates, supporting the hypothesis of a temporal shift in the scale of gene flow in D. jueirana-facao, which is consistent with predictions based on recent, dramatic forest fragmentation process. While we identified settings for filtering genomic data to avoid biases in gene flow estimates, we stress that there is no ‘rule of thumb’ for bioinformatic filtering and that relying on default program settings is not advisable. Instead, we suggest that the approach implemented here be applied independently in each separate empirical study to confirm appropriate settings to obtain unbiased population genetics estimates.


2021 ◽  
Author(s):  
Carlo Caruso ◽  
Mariana Rocha de Souza ◽  
Lupita Ruiz-Jones ◽  
Dennis Conetta ◽  
Joshua Hancock ◽  
...  

Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef building corals reproduce sexually, but many species also propagate asexually under certain conditions. In order to understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kaneohe Bay, Oahu, Hawaii using low-depth restriction digest associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that colony fragmentation contributes to the ecology of M. capitata at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.


Sign in / Sign up

Export Citation Format

Share Document