Tillage Systems and Nutrient Management - Great Plains

Author(s):  
J. F. Power ◽  
R. F. Follett
1999 ◽  
Vol 13 (1) ◽  
pp. 43-47 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Beverly R. Durgan

Green and yellow foxtail seed production following harvest of spring wheat is a concern of producers in the northern Great Plains of the United States and the Prairie Provinces of Canada. Experiments were conducted in 1996 and 1997 in three tillage systems, no till (NT), chisel plow (CP), and moldboard plow (MP), at the University of Minnesota West Central Experiment Station, Morris, MN, to determine whether time of glyphosate application or tillage after spring wheat harvest could reduce postharvest foxtail seed production. In both years, hard red spring wheat was planted in late April and a packaged mixture of fenoxaprop and 2,4-D ester and MCPA ester was applied at a rate of 53 g and 81 g and 246 g ai/ha for grass and broadleaf weed control. Following spring wheat harvest, each main plot was subdivided into seven subplots, including an untreated control. One subplot was disked twice at 4 to 6 d after harvest (DAH) of spring wheat, and five other subplots had glyphosate (0.25 kg ai/ ha) applied on different days (1 to 31 DAH). Foxtail seeds were collected from the soil surface following first frost, and the number of green and yellow foxtail seeds were determined. Tillage immediately after spring wheat harvest eliminated foxtail plants, and no new foxtail seedlings emerged in either tilled or glyphosate-treated plots despite ideal postharvest conditions for foxtail germination and emergence in 1997. Most viable green foxtail seeds were consistently obtained in NT plots, whereas yellow foxtail seed production varied among tillage systems. Either tillage soon after spring wheat harvest or glyphosate application within 16 DAH reduced green and yellow foxtail seed production by greater than 70%.


1994 ◽  
Vol 86 (4) ◽  
pp. 725-730 ◽  
Author(s):  
A. F. Wiese ◽  
W. L. Harman ◽  
B. W. Bean ◽  
C. D. Salisbury

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1860
Author(s):  
James R. Kiniry ◽  
Caroline E. Arthur ◽  
Katherine M. Banick ◽  
Felix B. Fritschi ◽  
Yanqi Wu ◽  
...  

A great deal of effort has been applied to maximizing switchgrass (Panicum virgatum L.) production for bioenergy by leveraging existing local adaptation to climate and via nutrient management in this perennial grass crop. However, the biotic component of soils can also affect plant production and long-term suitability at a given site. Here, we tested how productivity of four switchgrass cultivars were affected by four microbial sources from the Great Plains. All inoculum soil sources were previously conditioned by a mixture of switchgrass cultivars, allowing us to explicitly address plant-soil feedback effects. Microbial soil inocula were added to a consistent background soil to avoid physicochemical variation across the sources. We found that the soil microbial inoculum source mattered more than cultivar in determining switchgrass biomass. The addition of microbes resulted in smaller plants, with the largest plants found on control soils with no inoculum, but some inocula were less negative than others. There was no geographic matching between cultivars and soil microbial inoculum, suggesting little local adaptation to the biotic component of soils. In addition, measurements of fungal root colonization suggest that fungi are not responsible for the observed patterns. Based on these results, we suggest that switchgrass cultivation could benefit from considering effects of the soil biota. Additional work is needed to generalize these patterns over time, to a wider geographic area, and to a broader range of cultivars.


2012 ◽  
Vol 44 (4) ◽  
pp. 561-576 ◽  
Author(s):  
Jeffery R. Williams ◽  
Matthew J. Pachta ◽  
Kraig L. Roozeboom ◽  
Richard V. Llewelyn ◽  
Mark M. Claassen ◽  
...  

The economic feasibility of soybeans, grain sorghum, and corn in annual rotation with winter wheat using reduced tillage and no-tillage systems in the Central Great Plains was evaluated, with continuous wheat and grain sorghum also analyzed. Net returns were calculated using simulated yield and price distributions based on historical yields, two historical annual price series, and 2011 costs. Stochastic Efficiency with Respect to a Function was used to determine the preferred strategies under various risk preferences. The no-till wheat-soybean and reduced-till wheat-soybean systems are the first and second most preferred, regardless of the level of risk aversion.


2011 ◽  
Vol 27 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Paul Mäder ◽  
Alfred Berner

AbstractNo-tillage and reduced tillage are considered sustainable options of conservation tillage. While US organic farming researchers have focused on no-tillage, European organic farming researchers have concentrated on reduced tillage through the reduction of tillage depth or the application of noninversion tillage practices. Combinations of these two approaches have been implemented by the use of the two-layer plow or the layer cultivator. These innovations often came from farmers, aiming at reducing off-farm inputs such as fuel, and saving costs and labor, while at the same time building up soil fertility. Systematic, documented research on reduced tillage systems in Europe started only 1–2 decades ago, with experiments in Germany, Switzerland and France. While most experiments mimic stockless farms, other experiments include fodder crops such as grass–clover ley and applications of manure and slurry as is typical for mixed farms with animals and crops. Soil organic carbon, microbial activity and soil structure are often improved in the upper soil layer under reduced tillage compared with plowed soils. However, these positive findings were confounded by lower yields in some cases and enhanced weed pressure, except for the two-layer plow. Often it was not possible to determine whether and to what extent yield reduction was due to weed competition or to nitrogen shortage, because of retarded nitrogen mineralization in spring in reduced tillage systems. In systems with manure use, also higher soil fertility measures concomitant with increased yields were reported under reduced tillage. Indeed, it is difficult to gain an overview on research activities dealing with reduced tillage in organic farming in Europe due to dispersed experimental infrastructures and the scarcity of peer-reviewed published literature. To close this knowledge gap a European Network is being established aiming at further developing reduced tillage systems in organic farming, addressing the issue of carbon sequestration and N2O emissions, as well as weed and nutrient management.


Sign in / Sign up

Export Citation Format

Share Document