Limiting Green and Yellow Foxtail (Setaria viridisandS. glauca) Seed Production Following Spring Wheat (Triticum aestivum) Harvest

1999 ◽  
Vol 13 (1) ◽  
pp. 43-47 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Beverly R. Durgan

Green and yellow foxtail seed production following harvest of spring wheat is a concern of producers in the northern Great Plains of the United States and the Prairie Provinces of Canada. Experiments were conducted in 1996 and 1997 in three tillage systems, no till (NT), chisel plow (CP), and moldboard plow (MP), at the University of Minnesota West Central Experiment Station, Morris, MN, to determine whether time of glyphosate application or tillage after spring wheat harvest could reduce postharvest foxtail seed production. In both years, hard red spring wheat was planted in late April and a packaged mixture of fenoxaprop and 2,4-D ester and MCPA ester was applied at a rate of 53 g and 81 g and 246 g ai/ha for grass and broadleaf weed control. Following spring wheat harvest, each main plot was subdivided into seven subplots, including an untreated control. One subplot was disked twice at 4 to 6 d after harvest (DAH) of spring wheat, and five other subplots had glyphosate (0.25 kg ai/ ha) applied on different days (1 to 31 DAH). Foxtail seeds were collected from the soil surface following first frost, and the number of green and yellow foxtail seeds were determined. Tillage immediately after spring wheat harvest eliminated foxtail plants, and no new foxtail seedlings emerged in either tilled or glyphosate-treated plots despite ideal postharvest conditions for foxtail germination and emergence in 1997. Most viable green foxtail seeds were consistently obtained in NT plots, whereas yellow foxtail seed production varied among tillage systems. Either tillage soon after spring wheat harvest or glyphosate application within 16 DAH reduced green and yellow foxtail seed production by greater than 70%.

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1686
Author(s):  
Arvid Boe ◽  
Kevin D. Kephart ◽  
John D. Berdahl ◽  
Michael D. Peel ◽  
E. Charles Brummer ◽  
...  

Yellow-flowered alfalfa (Medicago sativa subsp. falcata) (also known as sickle medic) has been the cornerstone for breeding alfalfa for dual grazing and hay production in the semiarid regions of the northern Great Plains in the US and Canada. Most, if not all, of the cultivars developed for the northern Great Plains during the 20th century, had parentage tracing back to introductions by Niels Ebbesen Hansen that were obtained from expeditions to Russia, primarily the province of Siberia, on behalf of the United States Department of Agriculture during the early 1900s. The M. falcata genome contains alleles for high levels of drought-tolerance, winter hardiness, and tolerance to grazing, but is generally deficient for commercial seed production traits, such as non-shatter, compared with common alfalfa (M. sativa). A naturalized population, tracing to USDA plant introductions to Perkins County South Dakota by N.E. Hansen in early 1900, and subsequently, facilitated by the determined seed increase and interseeding of a population by a local rancher, Norman ‘Bud’ Smith, has shown highly desirable in situ characteristics for improving rangelands in the northern Great Plains. This includes adequate seed production to build a seed bank in the soil for natural seedling recruitment and population maintenance/expansion and support the production of a commercial seed source. This review documents the seminal events in the development of cultivars to date and describes novel germplasm with potential for new cultivars in the future.


2020 ◽  
Vol 20 (20) ◽  
pp. 11907-11922
Author(s):  
Peiyu Cao ◽  
Chaoqun Lu ◽  
Jien Zhang ◽  
Avani Khadilkar

Abstract. The increasing demands of food and biofuel have promoted cropland expansion and nitrogen (N) fertilizer enrichment in the United States over the past century. However, the role of such long-term human activities in influencing the spatiotemporal patterns of ammonia (NH3) emission remains poorly understood. Based on an empirical model and time-series gridded datasets including temperature, soil properties, N fertilizer management, and cropland distribution history, we have quantified monthly fertilizer-induced NH3 emission across the contiguous US from 1900 to 2015. Our results show that N-fertilizer-induced NH3 emission in the US has increased from <50 Gg N yr−1 before the 1960s to 641 Gg N yr−1 in 2015, for which corn and spring wheat are the dominant contributors. Meanwhile, urea-based fertilizers gradually grew to the largest NH3 emitter and accounted for 78 % of the total increase during 1960–2015. The factorial contribution analysis indicates that the rising N fertilizer use rate dominated the NH3 emission increase since 1960, whereas the impacts of temperature, cropland distribution and rotation, and N fertilizer type varied among regions and over periods. Geospatial analysis reveals that the hot spots of NH3 emissions have shifted from the central US to the Northern Great Plains from 1960 to 2015. The increasing NH3 emissions in the Northern Great Plains have been found to closely correlate to the elevated NH4+ deposition in this region over the last 3 decades. This study shows that April, May, and June account for the majority of NH3 emission in a year. Interestingly, the peak emission month has shifted from May to April since the 1960s. Our results imply that the northwestward corn and spring wheat expansion and growing urea-based fertilizer uses have dramatically altered the spatial pattern and temporal dynamics of NH3 emission, impacting air pollution and public health in the US.


2007 ◽  
Vol 42 (2) ◽  
pp. 133-138 ◽  
Author(s):  
H.B. Goosey ◽  
A.W. Lenssen ◽  
G.D. Johnson ◽  
S.L. Blodgett ◽  
G. R. Carlson ◽  
...  

The wheat stem sawfly, Cephus cinctus Norton, is the primary arthropod pest of wheat, Triticum aestivum Thell, in the Northern Great Plains. Yet, information is unavailable on wheat stem sawfly infestation potential of currently grown spring durum cultivars. Field trials were conducted in 1998 and 1999 to determine wheat stem sawfly susceptibility of 13 spring durum cultivars and one hard red spring wheat. Preharvest infestations ranged from 2–55%. Postharvest larval infestations of stubble ranged from 1–9.5%. Three durum cultivars ‘Lloyd’, ‘Plenty’, and ‘Sceptre’ appear to offer potential, as a rotational crop, for management of wheat stem sawfly.


2015 ◽  
Vol 78 (3) ◽  
pp. 597-601 ◽  
Author(s):  
JULIE A. KURUC ◽  
PAUL SCHWARZ ◽  
CHARLENE WOLF-HALL

Ochratoxin A (OTA) is a mycotoxin of significant health concern that is present in a variety of cereal grains and other foods around the world. Although OTA contamination can occur prior to harvest, it is largely considered a storage issue that can be controlled through the implementation of proper storage practices. Barley, durum, and hard red spring wheat samples that had been stored for various lengths of time were collected (n = 262) over a period of 2 years by multiple commercial grain companies located in the northwestern and northern Great Plains regions of the United States. Samples were analyzed for OTA concentration using high-performance liquid chromatography with fluorescence detection. OTA was detected in 12.2% of the samples, and of those samples, 81.3% had been stored for ≥6 months. One sample of barley and four samples of wheat exceeded 5 ng/g of OTA.


1977 ◽  
Vol 57 (3) ◽  
pp. 729-733 ◽  
Author(s):  
L. C. DARLINGTON ◽  
D. E. MATHRE ◽  
R. H. JOHNSTON

Isolates of Claviceps purpurea (Fr.) Tul. originally isolated from many different grass hosts in the northern Great Plains and several other areas in the United States and England were tested for their pathogenicity to selected cultivars or lines of male-sterile wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). While there was a great range in the level of virulence, no clear-cut evidence of specific races was obtained. A few isolates were weakly virulent on two cultivars of male-sterile spring wheat but were highly virulent on the other two cultivars tested. Wheat and barley breeders are advised to use a mixture of isolates in screening germ plasm for resistance to ergot.


2005 ◽  
Vol 137 (4) ◽  
pp. 497-500 ◽  
Author(s):  
Tuilo B. Macedo ◽  
Paula A. Macedo ◽  
Robert K.D. Peterson ◽  
David K. Weaver ◽  
Wendell L. Morrill

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is an insect pest in dryland wheat cropping systems in the southern Canadian Prairies and the northern Great Plains of the United States (Morrill 1997). Yield losses caused by C. cinctus are due to reduced head weight (Holmes 1977; Morrill et al. 1992) and lodging, which decreases harvest efficiency. Estimates of yield losses in Montana alone are about US$25 million per year.


Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


2009 ◽  
Vol 66 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
Courtney R. Salm ◽  
Jasmine E. Saros ◽  
Sherilyn C. Fritz ◽  
Christopher L. Osburn ◽  
David M. Reineke

We investigated patterns of primary production across prairie saline lakes in the central and northern Great Plains of the United States. Based on comparative lake sampling in 2004, seasonal predictors of algal primary productivity were identified within subsets of similar lakes using a combination of Akaike’s information criterion (AIC) and classification and regression trees (CART). These models indicated complex patterns of nutrient limitation by nitrogen (N), phosphorus (P), and iron (Fe) within different lake groups. Nutrient enrichment assays (control, + Fe, + N, + P, + N + P) were performed in spring and summer of 2006 to determine if phytoplankton in selected lakes followed predicted patterns of nutrient limitation. Both the comparative lake sampling and experimental results indicated that N limitation was widespread in these prairie lakes, with evidence for secondary P limitation in certain lakes. In the experiments, iron did not stimulate primary production. Our results suggest that given the diverse geochemical nature of these lakes, classification models that separate saline lakes into subsets may be an effective method for improving predictions of algal production.


Sign in / Sign up

Export Citation Format

Share Document