Weed Technology
Latest Publications


TOTAL DOCUMENTS

5066
(FIVE YEARS 399)

H-INDEX

70
(FIVE YEARS 6)

Published By Cambridge University Press

1550-2740, 0890-037x

2021 ◽  
pp. 1-30
Author(s):  
Clint W. Beiermann ◽  
Joshua W.A. Miranda ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
...  

Abstract The critical timing of weed removal (CTWR) is the point in crop development when weed control must be initiated to prevent crop yield loss due to weed competition. A field study was conducted in 2018 and 2020 near Scottsbluff, NE to determine how the use of preemergence herbicides impacts the CTWR in dry bean. The experiment was arranged as a split-plot, with herbicide treatment and weed removal timing as main and sub plot factors, respectively. Herbicide treatment consisted of no-preemergence, or pendimethalin (1070 g ai ha–1) + dimethenamid-P (790 g ai ha–1) applied preemergence. Sub-plot treatments included season-long weed-free, weed removal at: V1, V3, V6, R2, and R5 dry bean growth stages, and a season-long weedy control. A four-parameter logistic model was used to estimate the impact of time of weed removal, for all response variables including dry bean yield, dry bean plants m–1 row, pods plant–1, seeds pod–1, and seed weight. The CTWR based on 5% yield reduction was estimated to range from the V1 growth stage [(16 d after emergence (DAE)] to the R1 growth stage (39 DAE) in the no-PRE herbicide treatment. In the PRE-applied treatment, the CTWR began at the R2 growth stage (47 DAE). Dry bean plants m–1 row was reduced in the no-preemergence treatment when weed removal was delayed beyond the R2 growth stage in the 2020 field season. The use of preemergence-applied herbicides prevented a reduction in the number of pods plant–1 in 2020, and the number of seeds pod–1 in 2018 and 2020. In 2018, the number of pods plant–1 was reduced by 73% when no-preemergence was applied, compared to 26% in the preemergence-applied treatment. The use of preemergence-applied soil active herbicides in dry bean delayed the CTWR and preserved yield potential.


2021 ◽  
pp. 1-25
Author(s):  
Roberto Lujan Rocha ◽  
Yaseen Khalil ◽  
Aniruddha Maity ◽  
Hugh J. Beckie ◽  
Michael B. Ashworth

Abstract Wild oat is a herbicide resistance-prone global weed species that causes significant economic losses in dryland and horticultural agriculture. As a result, there has been a significant research effort in controlling this species. A major impediment to this research is the seed coat-mediated dormancy of wild oat, requiring a labor-intensive incision or puncturing of the seed coat to initiate seed germination. This study defines the most efficient settings of a mechanical thresher to overcome wild oat seed dormancy and then validates these settings using multiple populations collected from the Western Australian grain belt. We also compare the effects of rapid mechanical scarification and known germination stimulus tactics such as scarification with sulfuric acid (H2SO4), partial endosperm removal, sandpaper scarification of the seed coat, and immersion in sodium nitroprusside (NO donor SNP) solution on wild oat seedling growth rate. Threshing treatment of 1,500 rpm for 5 s provides equivalent germination compared with manually puncturing individual wild oat seeds, with no difference in seedling relative growth rate. The mechanical scarification of seeds using the thresher resulted in greater germination (66%) than H2SO4 scarification (0%), partial endosperm removal (10%), sandpaper seed coat scarification (25%), and exposure to NO donor SNP (34%). This study demonstrates that the physical dormancy of wild oat can be rapidly overcome using a commercially available mechanical thresher.


2021 ◽  
pp. 1-24
Author(s):  
Zhikui Hao ◽  
Muthukumar Bagavathiannan ◽  
Ying Li ◽  
Mingnan Qu ◽  
Zhiyong Wang ◽  
...  

Abstract Wood vinegar, a product of pyrolysis, can induce phytotoxicity on plants when applied at an adequate rate and concentration. The objective of this research was to investigate wood vinegar obtained from the pyrolysis of apple tree branches for weed control in dormant zoysiagrass. In environment-controlled growth chambers, white clover visual injury and shoot mass reduction compared to the nontreated control were evaluated after wood vinegar application at 1000, 2000, or 4000 L ha-1 under 10 or 30 C temperature conditions. Averaged across rates, wood vinegar rapidly desiccated white clover and caused 83 and 71% visual injury at 10 and 30 C, respectively, at 1 d after treatment (DAT). Averaged across temperatures, wood vinegar at 1000, 2000, and 4000 L ha-1 reduced white clover shoot mass by 56, 81, and 98% from the nontreated control at 10 DAT, respectively. In field experiments, weed control increased as wood vinegar rates increased from 1000 to 5000 L ha-1 in dormant zoysiagrass. The effective application dose of wood vinegar required to provide 90% control (ED90) of annual fleabane, Persian speedwell, and white clover was determined to be 2450, 2300, and 4020 L ha-1, respectively, at 2 weeks after treatment. Turf quality did not differ among the wood vinegar treatments and the nontreated control when zoysiagrass completely recovered from dormancy. Overall, results illustrate that wood vinegar resulting from the pyrolysis of apple tree branches can be used as a nonselective herbicide in dormant turfgrass, offering a new non-synthetic herbicide option for weed control in managed turf.


2021 ◽  
pp. 1-23
Author(s):  
Clint W. Beiermann ◽  
Cody F. Creech ◽  
Stevan Z. Knezevic ◽  
Amit J. Jhala ◽  
Robert Harveson ◽  
...  

Abstract Late-emerging summer annual weeds are difficult to control in dry bean production fields. Dry bean is a poor competitor with weeds, due to its slow rate of growth and delayed canopy formation. Palmer amaranth is particularly difficult to control due to season-long emergence and resistance to acetolactate synthase (ALS)-inhibiting herbicides. Dry bean growers rely on PPI and preemergence residual herbicides for the foundation of their weed control programs; however, postemergence herbicides are often needed for season-long weed control. The objective of this experiment was to evaluate effect of planting date and herbicide program on late-season weed control in dry bean in western Nebraska. Field experiments were conducted in 2017 and 2018 near Scottsbluff, Nebraska. The experiment was arranged in a split-plot design, with planting date and herbicide program as main-plot and sub-plot factor, respectively. Delayed planting was represented by a delay of 15 days after standard planting time. The treatments EPTC + ethalfluralin, EPTC + ethalfluralin fb imazamox + bentazon, and pendimethalin + dimethenamid-P fb imazamox + bentazon, resulted in the lowest Palmer amaranth density three weeks after treatment (WAT) and the highest dry bean yield. The imazamox + bentazon treatment provided poor Palmer amaranth control and did not consistently result in Palmer amaranth density and biomass reduction, compared to the non-treated control. In 2018, the delayed planting treatment had reduced Palmer amaranth biomass with the pendimethalin + dimethenamid-P treatment, as compared to standard planting. Delaying planting did not reduce dry bean yield and had limited benefit in improving weed control in dry bean.


2021 ◽  
pp. 1-25
Author(s):  
Kolby R. Grint ◽  
Christopher Proctor ◽  
Ryan DeWerff ◽  
Daniel H. Smith ◽  
Nicholas J. Arneson ◽  
...  

Herbicides with soil-residual activity have the potential for carryover into subsequent crops, resulting in injury to sensitive crops and limiting productivity if severe. The increased use of soil residual herbicides in the United States for management of troublesome weeds in corn and soybean cropping systems has potential to result in more cases of carryover. Soil management practices have different effects on the soil environment, potentially influencing herbicide degradation and likelihood of carryover. Field experiments were conducted at three sites in 2019 and 2020 to determine the effects of corn (clopyralid and mesotrione) and soybean (fomesafen and imazethapyr) herbicides applied in the fall at reduced rates (25% and 50% of labeled rates) and three soil management practices (tillage, no-tillage, and a fall established cereal rye cover crop) on subsequent growth and productivity of the cereal rye cover crop and the soybean and corn crops, respectively. Most response variables (cereal rye biomass and crop canopy cover at cover crop termination in the spring, early season crop stand, and herbicide injury ratings, and crop yield) were not affected by herbicide carryover. Corn yield was lower when soil was managed with a cereal rye cover crop compared to tillage at all three sites while yield was lower for no-till compared to tillage at two sites. Soybean yield was lower when managed with a cereal rye cover crop compared to tillage and no-till at one site. Findings from this research indicate a low carryover risk for these herbicides across site-years when label rotational restrictions are followed and environmental conditions favorable for herbicide degradation exist, regardless of soil management practice on silt loam or silty clay loam soil types in the Midwest U.S. region.


2021 ◽  
pp. 1-23
Author(s):  
Michael J. Walsh ◽  
Peter Newman ◽  
Paul Chatfield

Abstract Wild radish is the most problematic broadleaf weed of Australian grain production. The propensity of wild radish to evolve resistance to herbicides has led to high frequencies of multiple herbicide resistant populations present in these grain production regions. The objective of this study was to evaluate the potential of mesotrione to selectively control wild radish in wheat. The initial dose response pot trials determined that at the highest mesotrione rate of 50 g ha−1, PRE application was 30% more effective than POST on wild radish. This same rate of mesotrione POST resulted in a 30% reduction in wheat biomass compared to 0% for the PRE application. Subsequent, mesotrione PRE dose response trials identified a wheat selective rate range of >100 and < 300 g ai ha−1 that provided greater than 85% wild radish control with less than 15% reduction in wheat growth. Field evaluations confirmed the efficacy of mesotrione at 100 to 150 g ai ha−1 in reducing wild radish populations by greater than 85% following PRE application and incorporation by wheat planting. Additionally, these field trials demonstrated the opportunity for season-long control of wild radish when mesotrione PRE was followed by bromoxynil POST. The sequential application of mesotrione, an HPPD-inhibiting herbicide, PRE followed by bromoxynil, a PS II-inhibiting herbicide POST has the potential to provide 100% wild radish control with no effect on wheat growth.


2021 ◽  
pp. 1-27
Author(s):  
Graham W. Charles ◽  
Ian N. Taylor

Abstract The critical period for weed control (CPWC) adds value to integrated weed management by identifying the period during which weeds need to be controlled to avoid yield losses exceeding a defined threshold. However, the traditional application of the CPWC does not identify the timing of control needed for weeds that emerge late in the critical period. In this study, CPWC models were developed from field data in high yielding cotton crops during three summer seasons from 2005 to 2008, using the mimic weed; common sunflower, at densities of 2 to 20 plants m−2. Common sunflower plants were introduced at up to 450 growing degree days (GDD) after crop planting and removed at successive 200 GDD intervals after introduction. The CPWC models were described using extended Gompertz and logistic functions that included weed density, time of weed introduction and time of weed removal (logistic function only) in the relationships. The resulting models defined the CPWC for late emerging weeds, identifying a period after weed emergence before weed control was required to prevent yield loss exceeding the yield-loss threshold. Where weeds emerged in sufficient numbers toward the end of the critical period, the model predicted that crop yield loss resulting from competition by these weeds would not exceed the yield-loss threshold until well after the end of the CPWC. These findings support the traditional practice of ensuring weeds are controlled before crop canopy closure, with later weed control inputs used as required.


2021 ◽  
pp. 1-20
Author(s):  
Nikola Arsenijevic ◽  
Ryan DeWerff ◽  
Shawn Conley ◽  
Matthew Ruark ◽  
Rodrigo Werle

The role of weed suppression by the cultivated crop is often overlooked in annual row cropping systems. Agronomic practices such as planting time, row spacing, tillage and herbicide selection may influence the time of crop canopy closure. The objective of this research was to evaluate the influence of the aforementioned agronomic practices and their interaction with the adoption of an effective preemergence (PRE) soil residual herbicide program on soybean canopy closure and yield. A field experiment was conducted in 2019 and 2020 at Arlington, WI as a 2×2×2×2 factorial in a randomized complete block design, including early (late-April) and standard (late-May) planting time, narrow (38 cm) and wide (76 cm) row spacing, conventional tillage and no-till, and soil-applied PRE herbicide (yes and no; flumioxazin 150 g ai ha−1 + metribuzin 449 g ai ha−1 + pyroxasulfone 190 g ai ha-1). All plots were maintained weed-free throughout the growing season. In both years, early planted soybeans reached 90% green canopy cover (T90) before (7 to 9 d difference) and yielded more (188 to 902 kg ha−1 difference) than the standard planted soybeans. Narrow-row soybeans reached T90 earlier than wide-row soybeans (4 to 7 d difference), but yield was similar between row spacing treatments. Conventional tillage had a higher yield when compared to a no-till system (377 kg ha−1 difference). The PRE herbicide slightly delayed T90 (4 d or less) but had no impact on yield. All practices investigated herein influenced the time of soybean canopy closure but only planting time and tillage impacted yield. Planting soybeans earlier and reducing their row spacing expedites the time to canopy closure. The potential delay in canopy development and yield loss if soybeans are allowed to compete with weeds early in the season would likely outweigh the slight delay in canopy development by an effective PRE herbicide.


2021 ◽  
pp. 1-23
Author(s):  
Connor L. Hodgskiss ◽  
Travis R. Legleiter ◽  
Bryan G. Young ◽  
William G. Johnson

Commercialization of 2,4-D-resistant soybean varieties allows for postemergence (POST) applications of 2,4-D in soybean. With the increase in POST applications of 2,4-D in soybean, shifts in weed populations may occur. A long-term field trial was conducted over seven years in a corn-soybean rotation. Weed populations were subjected to four herbicide strategies with variable levels of 2,4-D reliance. The strategies used included: 1) diversified glyphosate strategy with six herbicide sites of action (SOA); 2) 2,4-D reliant strategy with three SOA; 3) diversified 2,4-D reliant strategy with seven SOA; and 4) fully diversified strategy with eight SOA. Soil residual herbicides were utilized for both corn and soybean years, except for the 2,4-D reliant strategy which only utilized a residual herbicide during the corn years. A 52% or greater reduction in weed densities for all herbicide strategies, except the 2,4-D reliant strategy, was observed by the end of the study. However, the density of weeds tolerant to 2,4-D, such as monocots, increased after three years of selection pressure, and more than doubled after five years of selection pressure in the 2,4-D reliant strategy. Additionally, in the 2,4-D reliant strategy with three SOA, species richness was 30% higher in the soil seedbank compared to herbicides strategies with six or more SOA. In order to delay weed shifts, diversified herbicide strategies with more than three SOA that include residual herbicides should be used in corn:soybean rotational systems that utilize 2,4-D-resistant soybean.


2021 ◽  
pp. 1-51
Author(s):  
Amit J. Jhala ◽  
Hugh J. Beckie ◽  
Carol Mallory-Smith ◽  
Marie Jasieniuk ◽  
Roberto Busi ◽  
...  

Abstract The objective of this paper was to review the reproductive biology, herbicide-resistant (HR) biotypes, pollen-mediated gene flow (PMGF), and potential for transfer of alleles from HR to susceptible grass weeds including barnyardgrass, creeping bentgrass, Italian ryegrass, johnsongrass, rigid (annual) ryegrass, and wild oats. The widespread occurrence of HR grass weeds is at least partly due to PMGF, particularly in obligate outcrossing species such as rigid ryegrass. Creeping bentgrass, a wind-pollinated turfgrass species, can efficiently disseminate herbicide resistance alleles via PMGF and movement of seeds and stolons. The genus Agrostis contains about 200 species, many of which are sexually compatible and produce naturally occurring hybrids as well as producing hybrids with species in the genus Polypogon. The self-incompatibility, extremely high outcrossing rate, and wind pollination in Italian ryegrass clearly point to PMGF as a major mechanism by which herbicide resistance alleles can spread across agricultural landscapes, resulting in abundant genetic variation within populations and low genetic differentiation among populations. Italian ryegrass can readily hybridize with perennial ryegrass and rigid ryegrass due to their similarity in chromosome numbers (2n=14), resulting in interspecific gene exchange. Johnsongrass, barnyardgrass, and wild oats are self-pollinated species, so the potential for PMGF is relatively low and limited to short distances; however, seeds can easily shatter upon maturity before crop harvest, leading to wider dispersal. The occurrence of PMGF in reviewed grass weed species, even at a low rate is greater than that of spontaneous mutations conferring herbicide resistance in weeds and thus can contribute to the spread of herbicide resistance alleles. This review indicates that the transfer of herbicide resistance alleles occurs under field conditions at varying levels depending on the grass weed species.


Sign in / Sign up

Export Citation Format

Share Document