scholarly journals The Feasibility of Shallow Time Domain Reflectometry Probes to Describe Solute Transport Through Undisturbed Soil Cores

2002 ◽  
Vol 66 (1) ◽  
pp. 53 ◽  
Author(s):  
Jaehoon Lee ◽  
Robert Horton ◽  
Dan B. Jaynes
Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 682 ◽  
Author(s):  
D. Moret-Fernández ◽  
C. Peña-Sancho ◽  
B. Latorre ◽  
Y. Pueyo ◽  
M. V. López

Estimation of the soil–water retention curve, θ(h), on undisturbed soil samples is of paramount importance to characterise the hydraulic behaviour of soils. Although a method of determining parameters of the water retention curve (α, a scale parameter inversely proportional to mean pore diameter and n, a measure of pore size distribution) from saturated hydraulic conductivity (Ks), sorptivity (S) and the β parameter, using S and β calculated from the inverse analysis of upward infiltration (UI) has been satisfactorily applied to sieved soil samples, its applicability to undisturbed soils has not been tested. The aim of the present study was to show that the method can be applied to undisturbed soil cores representing a range of textures and structures. Undisturbed soil cores were collected using stainless steel cylinders (5cm internal diameter×5cm high) from structured soils located in two different places: (1) an agricultural loam soil under conventional, reduced and no tillage systems; and (2) a loam soil under grazed and ungrazed natural shrubland. The α and n values estimated for the different soils using the UI method were compared with those calculated using time domain reflectometry (TDR) pressure cells (PC) for pressure heads of –0.5, –1.5, –3, –5, –10 and –50kPa. To compare the two methods, α values measured with UI were calculated to the drying branch of θ(h). For each treatment, three replicates of UI and PC calculations were performed. The results showed that the 5-cm high cylinders used in all experiments provided accurate estimates of S and β. Overall, the α and n values estimated with UI were larger than those measured with PC. These differences could be attributed, in part, to limitations of the PC method. On average, the n values calculated from the optimised S and β data were 5% larger than those obtained with PC. A relationship with a slope close to 1 fitted the n values estimated using both methods (nPC=0.73 nUI+0.49; R2=0.78, P<0.05). The results show that the UI method is a promising technique to estimate the hydraulic properties of undisturbed soil samples.


2001 ◽  
Vol 32 (2) ◽  
pp. 99-114 ◽  
Author(s):  
Magnus Persson

During recent years, time domain reflectometry (TDR) has proved to be a valuable tool for both water content (θ) and bulk electrical conductivity (σa) measurements. To allow resident solute concentration (Cr) measurements, a calibration procedure is necessary for the relationship between σa and Cr. Two main calibration approaches exist. Direct calibration allows for Cr measurements with varying θ, while the indirect calibration method is used for conditions with constant θ. In this paper, three methods of achieving direct calibration parameters are presented and evaluated in three different soil types. Calibrations are made in both disturbed and undisturbed soil columns as well as in the field. It was shown that there were only small differences between calibration methods in homogeneous sand. In other soils, choosing the correct calibration is important. In clay soils solute transport measurements are difficult to take under conditions with varying θ, therefore it is suggested that only the indirect calibration approach should be used. When using TDR it is important to be aware of the accuracy of the TDR system in order to interpret data correctly. Some error sources are thus also briefly discussed.


Agronomie ◽  
2000 ◽  
Vol 20 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Pierre Benoit ◽  
Enrique Barriuso ◽  
Philippe Vidon ◽  
Benoit Réal

2018 ◽  
Vol 50 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Kenneth Miller ◽  
Brenna J. Aegerter ◽  
Nicholas E. Clark ◽  
Michelle Leinfelder-Miles ◽  
Eugene M. Miyao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document