undisturbed soil cores
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ulla Rosskopf ◽  
Daniel UTEAU ◽  
Stephan PETH

Abstract PurposeSoil structure evolving from physical and biological processes is closely related to soil mechanical characteristics and texture. A soil plot experiment in Bad Lauchstädt, Germany, allowed us to study the influence of substrate and genotype on the initial development of mechanical traits, differences between depths, and changes over the course of two years. MethodsPlots were homogeneously filled with a loam and a sand and planted with two maize (Zea mays L.) genotypes (wild type (WT) and rth3 mutant) with contrasting root hair attributes. Undisturbed soil cores were taken in 2019 and 2020 at 14 and 34 cm depth. Confined uniaxial compression tests were performed to determine pre-compression stress (σpc), compressibility (Cc, Cs) and elasticity index (EI). Mechanical energy was calculated based on penetration resistance tests with a penetrometer needle resembling root geometries. Resultsσpc, Cc and Cs were significantly higher in loam as compared to sand, whereas the factor genotype proved to be negligible. Over time, σpc increased and Cc decreased in loam from 2019 to 2020 and Cs declined in both substrates. Higher mechanical energies were observed in loam and partially in WT. Required energy was higher at 14 cm than at 34 cm depth and decreased from 2019 to 2020 in sand. Airdry sand samples required four times as much energy than those at -50 kPa.ConclusionFor the development of the mechanical traits examined texture proved to be the dominating factor and changes in soil stability could be observed within a short period of time.


Author(s):  
Jeanne Dollinger ◽  
Marjolaine Bourdat-Deschamps ◽  
Valérie Pot ◽  
Valentin Serre ◽  
Nathalie Bernet ◽  
...  

CATENA ◽  
2021 ◽  
Vol 196 ◽  
pp. 104816
Author(s):  
D. Moret-Fernández ◽  
B. Latorre ◽  
M.V. López ◽  
Y. Pueyo ◽  
J. Tormo ◽  
...  

2020 ◽  
Author(s):  
Svenja Roosch ◽  
Vincent Felde ◽  
Daniel Uteau ◽  
Stephan Peth

<p>Soil microaggregates are considered to play an important role in soil functioning and soil organic carbon (SOC) is of great importance for the formation and stabilization of these aggregates. The loss of SOC can occur, for example, after a change in land use and may lead to a decreased aggregate stability, which makes soils vulnerable to various threats, such as erosion or compaction. It is therefore important to understand the effect of SOC loss on aggregate stability in order to better understand and preserve the functioning of healthy soils.</p><p>We sampled two adjacent plots from a loess soil in Selhausen (North Rhine-Westphalia, Germany) in November of 2019 and measured aggregate stability and architecture of soil microaggregates. One plot was kept free from vegetation by the application of herbicides and by tillage (to a depth of 5 cm) from 2005 on, while the other plot was used for agriculture (conventional tillage). Over the course of 11 years, the SOC concentration in the bulk soil was reduced from 12.2 to 10.1 g SOC kg<sup>-1</sup> soil. We took 10 undisturbed soil cores from two depths of each plot (Ap and Bt horizons).</p><p>The stability of aggregates against hydraulic and mechanical stresses was tested using the widespread wet sieving approach and a newly developed dry crushing approach. Isolated microaggregates gained from the latter procedure were tested against tensile stress by adapting a crushing test in a load frame to the microaggregate scale. To shed light on the effect of a decreased SOC content on microaggregate structure, we scanned several microaggregates with a high-resolution computed tomography scanner (Zeiss Xradia 520 versa) at sub-micron resolutions and analyzed the features of their pore systems.</p><p>This will give us valuable insights into the interplay of mechanical and physicochemical stability, as well as the structural properties of microaggregates with regard to SOC depletion. The consequences for various soil functions provided by microaggregates, like the habitat function for microorganisms or their capacity to store and transport gas, water and nutrients, are discussed.</p>


2020 ◽  
Author(s):  
Yaser Ostovari ◽  
Baptist Köppendörfer ◽  
Julien Guigue ◽  
Jan Willem Van Groenigen ◽  
Rachel Creamer ◽  
...  

<p>Studies on soil organic carbon (SOC) stocks mostly focus on topsoils (< 30 cm). However, 30 to 63% of the SOC are stored in the subsoils (30 to 100 cm), and the factors controlling SOC storage in subsoils may be substantially different than in topsoils. The low mean SOC content in subsoils makes its quantification and characterization challenging. Thus, new approaches are required to depict the SOC stocks distribution in full soil profile. Hyperspectral imaging of soil core samples can provide high spatial resolution of the vertical distribution of SOC in a soil profile. The main objective of the ongoing study, within the Horizon 2020 European Project Circular Agronomics, is to apply laboratory hyperspectral imaging with a variety of machine learning approaches for the mapping of OC distribution in undisturbed soil cores. Soil cores were collected down to a depth of one meter in grasslands of 15 organic farms located in the Lungau Valley, in Austria. Some samples were divided into five depths in the field for classical bulk soil measurements (total carbon and nitrogen, texture, pH, EC and bulk density) on disturbed samples. Undisturbed soil cores were sliced vertically for laboratory hyperspectral imaging in the range of Vis-NIR (400-1000 nm). We were able to reveal the hotspots of OC and map the OC distribution in soil profile by applying a variety of machine learning approaches (i.e. partial least square and random forest regression) as a function of spectral responses. A digital elevation model was further exploited to investigate the effects of topographical factors such as elevation, aspect and slope on SOC profile distribution. Landsat 8 data were also used to depict the spatial variability of land insensitive cover/vegetation in study area.</p>


2019 ◽  
Vol 145 (4) ◽  
pp. 06019002
Author(s):  
Chittaranjan Ray ◽  
Matteo D’Alessio ◽  
Martina Sobotková ◽  
Arvind Mohanram ◽  
Michael Jenkins ◽  
...  

2018 ◽  
Vol 50 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Kenneth Miller ◽  
Brenna J. Aegerter ◽  
Nicholas E. Clark ◽  
Michelle Leinfelder-Miles ◽  
Eugene M. Miyao ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 4025 ◽  
Author(s):  
Steffen Beck-Broichsitter ◽  
Horst Gerke ◽  
Rainer Horn

The soil shrinkage behavior of mineral substrates needs to be considered for engineering long-term durable mineral liners of landfill capping systems. For this purpose, a novel three-dimensional laser scanning device was coupled with (a) a mathematical-empirical model and (b) in-situ tensiometer measurements as a combined approach to simultaneously determine the shrinkage behavior of a boulder marl, installed as top and bottom liner material at the Rastorf landfill (Northern Germany). The shrinkage behavior, intensity, and geometry were determined during a drying experiment with undisturbed soil cores (100 cm3) from two soil pits; the actual in-situ shrinkage was also determined in 0.2, 0.5, 0.8, and 1.0 m depth by pressure transducer tensiometer measurements during a four-year period. The volume shrinkage index was used to describe the pore size dependent shrinkage tendency and it was classified as low (4.9%) for the bottom liner. The in-situ matric potentials in the bottom liner ranged between −100 and −150 hPa, even during drier periods, thus, the previously highest observed drying range (pre-shrinkage stress) with values below −500 hPa and −1000 hPa was not exceeded. Therefore, the hydraulic stability of the bottom liner was given.


Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 682 ◽  
Author(s):  
D. Moret-Fernández ◽  
C. Peña-Sancho ◽  
B. Latorre ◽  
Y. Pueyo ◽  
M. V. López

Estimation of the soil–water retention curve, θ(h), on undisturbed soil samples is of paramount importance to characterise the hydraulic behaviour of soils. Although a method of determining parameters of the water retention curve (α, a scale parameter inversely proportional to mean pore diameter and n, a measure of pore size distribution) from saturated hydraulic conductivity (Ks), sorptivity (S) and the β parameter, using S and β calculated from the inverse analysis of upward infiltration (UI) has been satisfactorily applied to sieved soil samples, its applicability to undisturbed soils has not been tested. The aim of the present study was to show that the method can be applied to undisturbed soil cores representing a range of textures and structures. Undisturbed soil cores were collected using stainless steel cylinders (5cm internal diameter×5cm high) from structured soils located in two different places: (1) an agricultural loam soil under conventional, reduced and no tillage systems; and (2) a loam soil under grazed and ungrazed natural shrubland. The α and n values estimated for the different soils using the UI method were compared with those calculated using time domain reflectometry (TDR) pressure cells (PC) for pressure heads of –0.5, –1.5, –3, –5, –10 and –50kPa. To compare the two methods, α values measured with UI were calculated to the drying branch of θ(h). For each treatment, three replicates of UI and PC calculations were performed. The results showed that the 5-cm high cylinders used in all experiments provided accurate estimates of S and β. Overall, the α and n values estimated with UI were larger than those measured with PC. These differences could be attributed, in part, to limitations of the PC method. On average, the n values calculated from the optimised S and β data were 5% larger than those obtained with PC. A relationship with a slope close to 1 fitted the n values estimated using both methods (nPC=0.73 nUI+0.49; R2=0.78, P<0.05). The results show that the UI method is a promising technique to estimate the hydraulic properties of undisturbed soil samples.


2016 ◽  
Author(s):  
N. A. L. Archer ◽  
B. R. Rawlins ◽  
B. P. Machant ◽  
J. D. Mackay ◽  
P. I. Meldrum

Abstract. Capacitance probes are increasingly being used to monitor volumetric water content (VWC) in field conditions and are provided with in-built factory calibrations so they can be deployed at a field site without the requirement for local calibration. These calibrations may not always have acceptable accuracy and therefore to improve the accuracy of such calibrations soil-specific laboratory or field calibrations are required. In some cases, manufacturers suggest calibration is undertaken on soil in which the structure has been removed (through sieving or grinding), whilst in other cases manufacturers suggest structure may be retained. The objectives of this investigation were to (i) demonstrate the differences in laboratory calibration of the sensors using both structured and unstructured soils, (ii) compare moisture contents at a range of suctions with those predicted from soil moisture release curves for their texture classes (iii) compare the magnitude of errors for field measurements of soil moisture based on the original factory calibrations and the laboratory-based calibrations using structured soil. Grinding and sieving clay soils to  50 % water to the ground and sieved soil samples, dielectric values to VWC > 50 % were observed to be significantly lower than using undisturbed soil cores taken from the field and therefore undisturbed soil cores were considered to be better to calibrate capacitance probes. Generic factory calibrations for most soil sensors have a range of measurement from 0 to 50 %, which is not appropriate for the studied clay-rich soil, where ponding can occur during persistent rain events, which are common in temperate regions.


Sign in / Sign up

Export Citation Format

Share Document